TY - JOUR A1 - Vogel, Christian A1 - Krüger, Oliver A1 - Adam, Christian T1 - Thermochemical treatment of sewage sludge ash with sodium additives under reducing conditions analyzed by thermogravimetry JF - Journal of thermal analysis and calorimetry N2 - Phosphorus (P) for fertilizer use can be recovered from sewage sludge ash (SSA). To enhance the bioavailability of P and reduce the heavy metal content of SSA, it can be treated thermochemically with Na2CO3 or Na2SO4 at 950 °C in a rotary kiln using dry sewage sludge or lignite as reducing agent. These processes were investigated by thermogravimetry/differential thermal analysis coupled with gas analysis. Reducing conditions in this experimental setup were provided by 2 % hydrogen in the Ar carrier gas. During SSA + Na2CO3 treatment CO2, CO and water were detected in the off-gas. During SSA + Na2SO4 treatment SO2, some CO2 and water were detected. Heavy metal removal was more efficient for SSA + Na2CO3 compared to the sulfate variant. A SSA + Na2SO4 + lignite variant which also formed CO shifted the heavy metal removal to the results obtained with Na2CO3 which was obviously due to the additional reduction potential. However, Zn evaporation was not achieved with the Na2SO4 variants which were most probably due to immobilization as ZnS. KW - Phosphorus recovery KW - Thermochemical treatment KW - Sewage sludge ash KW - Reducing conditions KW - Heavy metal evaporation KW - FT-IR gas analysis PY - 2016 DO - https://doi.org/10.1007/s10973-015-5016-z SN - 1388-6150 SN - 1418-2874 SN - 0368-4466 SN - 1572-8943 VL - 123 IS - 2 SP - 1045 EP - 1051 PB - Springer CY - Dordrecht AN - OPUS4-34556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Krüger, Oliver A1 - Herzel, Hannes A1 - Amidani, L. A1 - Adam, Christian T1 - Chemical state of mercury and selenium in sewage sludge ash based P-fertilizers JF - Journal of Hazardous Materials N2 - Phosphorus-fertilizers from secondary resources such as sewage sludge ash (SSA) will become more important in the future as they could substitute conventional fertilizers based on the nonrenewable resource phosphate rock. Thermochemical approaches were developed which remove heavy metals from SSA prior to its fertilizer application on farmlands. We analyzed the chemical state of mercury and selenium in SSA before and after thermochemical treatment under different conditions for P-fertilizer production by X-ray absorption near edge structure (XANES) spectroscopy. In some incineration plants the mercury loaded carbon adsorber from off-gas cleaning was collected together with the SSA for waste disposal. SSAs from those plants contained mercury mainly bound to carbon/organic material. The other SSAs contained inorganic mercury compounds which are most probably stabilized in the SSA matrix and were thus not evaporated during incineration. During thermochemical treatment, carbon-bound mercury was removed quantitatively. In contrast, a certain immobile fraction of inorganic mercury compounds remained in thermochemically treated SSA, which were not clearly identified. HgSe might be one of the inorganic compounds, which is supported by results of Se K-edge XANES spectroscopy. Furthermore, the chemical state of selenium in the SSAs was very sensitive to the conditions of the thermochemical treatment. KW - X-ray absorption near edge structure (XANES) spectroscopy KW - Phosphorus recovery KW - Sewage sludge ash KW - Mercury KW - Selenium KW - Mercury selenide (HgSe) PY - 2016 UR - http://dx.doi.org/10.1016/j.jhazmat.2016.03.079 DO - https://doi.org/10.1016/j.jhazmat.2016.03.079 VL - 313 SP - 179 EP - 184 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-35718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -