TY - JOUR A1 - Woydt, Mathias A1 - Huang, S. A1 - Cannizza, E. A1 - Vleugels, J. A1 - Mohrbacher, H. T1 - Niobium carbide for machining and wear protection - Evolution of properties JF - Metal Powder Report N2 - The sales of niobium carbide (NbC) have grown in the last years, but NbC is still a hidden carbide and mainly used as grain growth inhibitor in hard metals. In the present work it was shown that the progress in the key properties, like HV30, KIC and strength, followed by machining and tribological results of the respective NbC grades. KW - Niobium carbide KW - Hard metals KW - Tribology PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-485507 DO - https://doi.org/10.1016/j.mprp.2019.02.002 SN - 0026-0657 VL - 74 IS - 2 SP - 82 EP - 89 PB - Elsevier Ltd. AN - OPUS4-48550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Mohrbacher, H. A1 - Vleugels, J. A1 - Huang, S. T1 - Potentials of niobium carbide (NBC) as cutting tools and for wear protection T2 - Ceramic Engineering and Science Proceedings (CESP) N2 - Niobium is today largely available. NbC displayed lower dry sliding friction over WC grades. The softer Ni- and NiMo-bonded NbC1.0-grades have a higer abrasive wear resistance (ASTM G65), even with lower toughnesses, than the tougher WC-Co grades and harder NbC-Co grades. T2 - 41st International Conference and Exposition on Advanced Ceramics and Composites CY - Daytona Beach, FL, USA DA - 22.01.2017 KW - Niobium Carbide (NbC) KW - Cutting tool KW - Hardness KW - Friction PY - 2017 VL - 38 SP - 1 EP - 13 AN - OPUS4-43430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - NbC grain growth control and mechanical properties of Ni bonded NbC cermets prepared by vacuum liquid phase sintering JF - International Journal of Refractory Metals & Hard Materials N2 - The current study reports on the effect of the sintering temperature and secondary carbide (VC, Mo2C and TiC) and Mo additions on the NbC grain growth, microstructure evolution as well as concomitant Vickers hardness (HV30) and fracture toughness of Ni-bonded NbC cermets. KW - Cermet KW - Niobium carbide KW - Sintering KW - Microstructure KW - Mechanical properties PY - 2018 DO - https://doi.org/10.1016/j.ijrmhm.2017.12.013 SN - 0263-4368 VL - 72 SP - 63 EP - 70 PB - Elsevier Science CY - Amsterdam AN - OPUS4-43582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - Microstructure and tribological performance of NbC-Ni cermets modified by VC and Mo2C JF - International Journal of Refractory Metals & Hard Materials N2 - The current study reports on the influence of the Addition of 5–15 vol% VC or/and Mo2C carbide on the microstructure and mechanical properties of nickel bonded NbC cermets, which are compared to cobalt bonded NbC cermets. The NbC, Ni and secondary carbides powder mixtures were liquid phase sintered for 1 h at 1420 °C in vacuum. The fully densified cermets are composed of a cubic NbC grains matrix and an evenly distributed fcc Ni binder. NbC grain growth was significantly inhibited and a homogeneous NbC grain size distribution was obtained in the cermets with VC/Mo2C additions. The mechanical properties of the NbC-Ni matrix cermets are strongly dependent on the carbide and Ni binder content and are directly compared to their NbC-Co equivalents. The liquid phase sintered NbC-12 vol% Ni cermet had a modest Vickers hardness (HV30) of 1077 ± 22 kg/mm2 and an indentation toughness of 9.1 ± 0.5 MPa·m1/2. With the addition of 10–15 vol% VC, the hardness increased to 1359 ± 15 kg/mm2, whereas the toughness increased to 11.3 ± 0.1 MPa·m1/2. Addition of 5 and 10 vol% Mo2C into a NbC-12 vol% Ni mixtures generated the same values in HV30 and KIC when compared to VC additions. A maximum flexural strength of 1899 ± 77 MPa was obtained in the cermet with 20 vol% Ni binder and 4 vol% VC+4 vol% Mo2C addition, exhibiting a high fracture toughness of 15.0 ± 0.5 MPa·m1/2, but associated with a loss in hardness due to the high Ni content. The dry sliding wear behaviour was established at room temperature and 400 °C from 0.1 to 10 m/s. KW - Cermet KW - Liquid phase sintering KW - Grain growth KW - Wear KW - Niobium carbide PY - 2017 DO - https://doi.org/10.1016/j.ijrmhm.2017.03.012 SN - 0263-4368 VL - 66 SP - 188 EP - 197 AN - OPUS4-40505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Mohrbacher, H. A1 - Vleugels, J. A1 - Huang, S. T1 - Status of nickel bonded niobium carbide (NbC) as a substitute for cobalt-bonded tungsten carbide (WC) as cutting tools and for wear protection T2 - Advances in Powder Metallurgy & Particulate Materials N2 - Niobium is today largely available. The initial NbC grade was substoichiometric, SPS sintered and cobalt bonded (NbC0.88-12Co SPS). The NiMo-bonded stoichiometric NbC1.0 grades enable the subtituion of cobalt by nickel, SPS by conventional sintering and NbC0.88 by NbC1.0 in view of functional properties. Nickel bonded NbC grades have improved toughnesses versus cobalt bonded NbC grades, but lose hardness. NiMo and NiMo2C bonded NbC1.0 grades compensated the loss in hardness while keeping the toughness. T2 - POWDERMET 2017 CY - Las Vegas, USA DA - 13.06.2017 KW - Niobium carbide (NbC) KW - Cutting tools KW - Wear PY - 2017 SP - 721 EP - 734 PB - Metal Powder Industries Federation AN - OPUS4-40671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - NbC grain growth control and mechanical properties of Ni bonded NbC cermets prepared by vacuum liquid phase sintering T2 - International Conference on Refractory Metals and Hard Materials- 19th Plansee seminar N2 - The current study reports on the effect of the sintering temperature and secondary carbide (VC, Mo2C and TiC) additions on the microstructure and concommitant Vickers hardness (HV30) and fracture toughness of Ni-bonded NbC cermets. All cermets were prepared by pressureless sintering in vacuum. Detailed microstructural investigation was performed by electron probe microanalysis (EPMA) and X-ray diffraction (XRD) analysis. Sintering results indicated that both the sintering temperature and secondary carbide additions had a significant effect on the properties of NbC-Ni cermets. Nickel pools and residual pores were observed in the cermets sintered at temperatures ≤ 1340 °C. Increasing of the sintering temperature up to 1420 or 1480 °C resulted in fully densified NbC-Ni based cermets composed of homogeneous contrast cubic NbC grains for the single carbide (VC or Mo2C) modyfied system, whereas core-rim structured NbC grains were observed with the additon of TiC + VC or TiC+Mo2C. The secondary carbide doped cermets with 5–10 vol.% VC/Mo2C and 10 vol.% TiC showed a significantly improved hardness and fracture toughness, as compared to the plain NbC-Ni cermets. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Cermet KW - Hard materials KW - Sintering KW - Microstructure KW - Core-rim KW - Mechanical properties PY - 2017 SP - HM 13/1 EP - HM 13/11 AN - OPUS4-40592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Mohrbacher, H. A1 - Vleugels, J. A1 - Huang, S. T1 - Potentials of niobium carbide (NbC) as cutting tools and for wear protection T2 - International Conference on Refractory Metals and Hard Materials N2 - The tool lifes of uncoated NiMo and NiMo2C-bonded stoichiometric NbC1.0 grades under dry turning 42CrMo4 and C45E were between +30 % to + 100 % higher and up compared to WC-6Co (fine grain). Niobium is today largely available. NbC grades displayed lower dry sliding friction over WC grades. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Niobium carbide KW - Friction KW - Wear KW - NbC KW - Hard metal KW - Machining KW - Nickel PY - 2017 SP - HM 102/1 EP - HM 102/16 AN - OPUS4-40593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - Effect of carbon content on the microstructure and mechanical properties of NbC-Ni based cermets T2 - International Conference on Refractory Metals and Hard Materials N2 - The aim of this work was to correlate the carbon content in NbC-Ni starting powders with the resulting microstructure, hardness and fracture toughness of Ni-bonded NbC cermets. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Cermet KW - Liquid phase sintering KW - Microstructure KW - Hardness KW - Carbon PY - 2017 SP - HM 109/1 EP - HM 109/11 AN - OPUS4-40595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huang, S. A1 - Vleugels, J. A1 - Cannizza, E. A1 - Woydt, Mathias A1 - Liu, Z. A1 - Mohrbacher, H. T1 - Niobium carbide based cermets with secondary carbide and carbonitride addition T2 - Niobium carbide based cermets with secondary carbide and carbonitride addition N2 - In this study, the influence of Ni binder content and carbide/carbonitride additions on the microstructure and mechanical properties of NbC-Ni matrix cermets were investigated. T2 - WORLDPM2018 CY - Beijing, China DA - 16.09.2018 KW - Cermet KW - Niobium carbide KW - Carbonitride KW - Sintering KW - Mechanical properties PY - 2018 SP - Part 5, 801 EP - 809 AN - OPUS4-46201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Huang, S. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Cannizza, E. T1 - Tailoring the functional profile of niobium carbide (NbC) as cutting tool materials and for wear protection T2 - 2018 World Congress on Powder Metallurgy N2 - In the present work it was shown that the properties of NbCx, like micro-hardness, hot-hardness, sliding wear resistance, elastic modulus and toughness can be tailored by the C/Nb ratio, the addition of secondary carbides and the type of binder. T2 - WORLDPM2018 CY - Beijing, China DA - 16.09.2018 KW - Niobium carbide KW - Properties KW - Wear KW - Machining PY - 2018 SP - Part 5, 785 EP - 795 AN - OPUS4-46204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vleugels, J. A1 - Cannizza, E. A1 - Woydt, Mathias A1 - Mohrbacher, H. T1 - Influence of sintering temperature and carbide additions on the microstructure and mechanical properties of NbC-Ni based cermets JF - Cemented carbide N2 - This study reports on the effect of the sintering temperature and VC, Mo2C and TiC as well as the combination of Mo+VC on the densification, NbC grain growth, microstructure evolution as well as mechanical properties of novel NbC-Ni based cermets. KW - Cermet KW - Niobium carbide KW - Nickel KW - Sintering KW - Mechanical properties PY - 2018 DO - https://doi.org/10.3969/j.issn.1003-7292.2018.02.001 SN - 1003-7292 VL - 35 IS - 2 SP - 69 EP - 78 PB - Yingzhi Hejin Bianjibu CY - Zhuzhou AN - OPUS4-46136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -