TY - CONF A1 - Vasilic, Ksenija A1 - Kühne, Hans-Carsten A1 - Schmidt, Wolfram A1 - Roussel, N. T1 - Numerical simulations of scc casting: parameter determination N2 - The paper addresses numerical modelling of fresh self-compacting concrete. In the previous studies, a numerical tool for casting prediction is built based on the assumption that fresh concrete behaves as a yield-stress fluid and treating zones with rebars as porous media. The present contribution discusses the determination of material parameters, which are required as an input for numerical simulations of casting processes. T2 - International RILEM Conference on Materials, Systems and Structures in Civil Engineering 2016, Segment on Fresh Concrete CY - Lyngby, Denmark DA - 22.08.2016 KW - Fresh concrete KW - Simulation KW - CFD KW - Rheology PY - 2016 SN - 978-2-35158-184-1 SP - 163 EP - 172 PB - RILEM Publications S.A.R.L. CY - Paris, France AN - OPUS4-37446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vasilic, Ksenija T1 - A numerical model for simulations of concrete casting N2 - In the last decades, numerical simulations of fresh concrete flow have gained importance in concrete industry. They showed a potential to become a tool for prediction of concrete casting and to help engineers to avoid expensive mistakes on site. A promising field for application of numerical modelling is casting of Self-Compacting Concrete (SCC), since the main area of application of SCC are complex and highly-reinforced building elements. Simulations of fresh concrete flow involve complex mathematical models and time-consuming computations. In case of casting simulations, the simulation time is additionally significantly increased because each reinforcement bar occurring in succession has to be considered one by one. This is particularly problematic in case of SCC casting, since this type of concrete is typically used for heavily-reinforced structural members. With the aim to decrease simulation time and to come closer to a practical simulation tool, we proposed an innovative modelling approach that models a zone with arrays of the reinforcement bars as a porous medium (PM). By defining characteristic parameters of the PM, its influence on the flow can be defined. This approach simplifies the geometry to be modelled and significantly decreases the computational time. The present contribution provides a brief description the proposed numerical model and of the conducted validation studies. The applicability of the model on fresh concrete is verified through the comparison between experimental measurements and numerical simulations. T2 - WMRIF 5th International Workshop for Young Scientists CY - Tsukuba, Japan DA - 07.11.2016 KW - Fresh concrete KW - CFD simulation KW - Rheology KW - Casting KW - Reinforcement PY - 2016 AN - OPUS4-38514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -