TY - CONF A1 - Vasilic, Ksenija A1 - Kühne, Hans-Carsten A1 - Meng, Birgit A1 - Roussel, N. ED - Rogge, A. ED - Meng, B. T1 - Modelling of fresh SCC flow through reinforced sections T2 - 52. DAfStb-Forschungskolloquium CY - Berlin, Deutschland DA - 2011-11-07 PY - 2011 SN - 978-3-9814281-0-0 SP - 50 EP - 57 PB - BAM Bundesanstalt für Materialforschung und -prüfung CY - Berlin AN - OPUS4-25193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vasilic, Ksenija A1 - Meng, Birgit A1 - Kühne, Hans-Carsten A1 - Roussel, N. T1 - Flow of fresh concrete through steel bars: a porous medium analogy N2 - Although being a very promising area of concrete technology, computational modeling of fresh concrete flow is a comprehensive and time consuming task. The complexity and required computation time are additionally increased when simulating casting of heavily reinforced sections, where each single reinforcement bar has to be modeled. In order to improve the computation speed and to get closer to a practical tool for simulation of casting processes, an innovative approach to model reinforced sections is proposed here. The basic idea of this approach is to treat the reinforcement zone as a porous medium in which a concrete is propagating. In the present paper, the numerical implementation of this concept is described. A methodology allowing for the computation of the equivalent permeability of the steel bars network is suggested. Finally, this numerical technique efficiency is evaluated by a comparison with experimental results of model fluids casting in model formworks. KW - Fresh concrete (A) KW - Rheology (A) KW - Modeling (E) KW - Permeability (C) KW - Yield stress KW - Simulation KW - Flow of mortar KW - Flow of concrete PY - 2011 U6 - https://doi.org/10.1016/j.cemconres.2011.01.013 SN - 0008-8846 SN - 1873-3948 VL - 41 IS - 5 SP - 496 EP - 503 PB - Pergamon Press CY - New York, NY AN - OPUS4-25532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Vasilic, Ksenija A1 - Roussel, N. A1 - Meng, Birgit A1 - Kühne, Hans-Carsten ED - Olafur H. Wallevik, ED - Stefan Kubens, ED - Sonja Oesterheld, T1 - Computational modelling of SCC flow: Reinforcement network modelled as porous medium T2 - 3rd International RILEM symposium on rheology of cement suspensions such as fresh concrete CY - Reykjavik, Iceland DA - 2009-08-19 KW - SCC KW - Modelling KW - CFD PY - 2009 SN - 978-2-35158-091-2 IS - PRO 68 SP - 148 EP - 154 PB - RILEM Publications AN - OPUS4-20238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Vasilic, Ksenija A1 - Roussel, N. A1 - Meng, Birgit A1 - Kühne, Hans-Carsten ED - Khayat, K.H. ED - Feys, D. T1 - Computational modeling of SCC flow through reinforced sections N2 - Computational modeling of fresh SCC flow is a comprehensive and time consuming task. The computational time is additionally increased when simulating casting of reinforced sections, where each single reinforcement bar has to be modeled. In order to deal with this issue and to decrease the computational time, an innovative approach of treating a reinforcement network as a porous medium is applied. This contribution presents the model for concrete flow through reinforced sections, based on Computational Fluid Dynamics (CFD), coupling a single-phase flow model for SCC and a continuum macroscopic model for porous medium. In the last part of this paper, numerical simulations are compared with experimental results obtained on model fluids. T2 - SCC2010 - Design, production and placement of self-consolidating concrete CY - Montreal, Canada DA - 2010-09-26 PY - 2010 SN - 978-90-481-9663-0 U6 - https://doi.org/10.1007/978-90-481-9664-7_16 N1 - Serientitel: RILEM bookseries – Series title: RILEM bookseries VL - 1 IS - 5 SP - 187 EP - 195 PB - Springer AN - OPUS4-22277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vasilic, Ksenija A1 - Meng, Birgit A1 - Kühne, Hans-Carsten A1 - Roussel, Nicolas T1 - Computational modelling of scc flow: reinforcement network modelled as a porous medium T2 - Rheo-Iceland 2009 3rd RILEM International Symposium on Rheology of Cement Suspensions Like Fresh Concrete CY - Reykjavik, Iceland DA - 2009-08-19 PY - 2009 AN - OPUS4-19403 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Vasilic, Ksenija A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Meng, Birgit ED - Stark, J. T1 - Experimental and numerical studies on calibration of a rotational rheometer for cementitious materials T2 - 17. Ibausil - Internationale Baustofftagung CY - Weimar, Germany DA - 2009-09-23 PY - 2009 SN - 978-3-00-027265-3 VL - 1 SP - 1-1135 - 1-1140 CY - Weimar AN - OPUS4-20300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vasilic, Ksenija A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Roussel, N. T1 - Numerical modelling of SCC flow through reinforced sections T1 - Numerische Simulation des Fließverhaltens von SVB durch bewehrte Querschnitte N2 - The study introduces the porous medium model for the simulation of concrete flow through highly-reinforced sections. It shows that numerical simulations can predict concrete behavior during casting and help to avoid expensive mistakes. N2 - Bei der hier dargestellten Untersuchung wird das Modell des porösen Mediums auf die Simulation des Fließverhaltens von Beton durch Querschnitte mit hohem Bewehrungsgrad angewandt. Dabei zeigt sich, dass mit Hilfe numerischer Simulationen das Verhalten des Betons während der Betonage prognostiziert und kostspielige Fehler vermieden werden können. PY - 2015 SN - 0373-4331 SN - 1865-6528 N1 - Sprachen: Deutsch/Englisch - Languages: German/English VL - 81 IS - 03 SP - 50 EP - 55 PB - Bauverl. CY - Gütersloh AN - OPUS4-33151 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vasilic, Ksenija A1 - Kühne, Hans-Carsten A1 - Schmidt, Wolfram A1 - Roussel, N. T1 - Numerical simulations of scc casting: parameter determination N2 - The paper addresses numerical modelling of fresh self-compacting concrete. In the previous studies, a numerical tool for casting prediction is built based on the assumption that fresh concrete behaves as a yield-stress fluid and treating zones with rebars as porous media. The present contribution discusses the determination of material parameters, which are required as an input for numerical simulations of casting processes. T2 - International RILEM Conference on Materials, Systems and Structures in Civil Engineering 2016, Segment on Fresh Concrete CY - Lyngby, Denmark DA - 22.08.2016 KW - Fresh concrete KW - Simulation KW - CFD KW - Rheology PY - 2016 SN - 978-2-35158-184-1 SP - 163 EP - 172 PB - RILEM Publications S.A.R.L. CY - Paris, France AN - OPUS4-37446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roussel, N. A1 - Gram, A. A1 - Cremonesi, M. A1 - Ferrara, L. A1 - Krenzer, K. A1 - Mechtcherine, V. A1 - Shyshko, S. A1 - Skocec, J. A1 - Spangenberg, J. A1 - Svec, O. A1 - Thrane, L. N. A1 - Vasilic, Ksenija T1 - Numerical simulations of concrete flow: A benchmark comparison N2 - First, we define in this paper two benchmark flows readily usable by anyone calibrating a numerical tool for concrete flow prediction. Such benchmark flows shall allow anyone to check the validity of their computational tools no matter the numerical methods and parameters they choose. Second, we compare numerical predictions of the concrete sample final shape for these two benchmark flows obtained by various research teams around the world using various numerical techniques. Our results show that all numerical techniques compared here give very similar results suggesting that numerical simulations of concrete filling ability when neglecting any potential components segregation have reached a technology readiness level bringing them closer to industrial practice. KW - Casting KW - Fresh Concrete KW - Rheology KW - Workability KW - Modeling PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S0008884615002604 U6 - https://doi.org/10.1016/j.cemconres.2015.09.022 SN - 0008-8846 VL - 2016/79 SP - 265 EP - 271 PB - Elsevier Ltd. AN - OPUS4-37440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vasilic, Ksenija A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Haamkens, Frank A1 - Mechtcherine, V. A1 - Roussel, N. T1 - Flow of fresh concrete through reinforced elements: Experimental validation of the porous analogy numerical method N2 - Numerical simulations of concrete castings are complex and time consuming. In order to decrease simulation time and to simplify simulation procedure, an innovative modelling approach, which treats reinforced sections in a formwork as porous media, was proposed. In the previous studies, this numerical model was proved suitable to simulate casting of model yield-stress fluids through reinforced elements. This article focuses on the experimental validation of the proposed model at the concrete scale. For this purpose, a large-scale laboratory casting of a highly reinforced beam is performed. The casting process is numerically simulated and the numerical results are compared to the experimental measurements. KW - Porous medium KW - Self-compacting concrete KW - Casting KW - CFD simulation KW - Reinforcement PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S0008884616301880 U6 - https://doi.org/10.1016/j.cemconres.2016.06.003 SN - 0008-8846 VL - 2016/88 SP - 1 EP - 6 PB - Elsevier Ltd. AN - OPUS4-37441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vasilic, Ksenija A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Roussel, N. T1 - Model of SCC flow through reinforced sections: experimental validation N2 - This study focuses on concrete flow in presence of obstacles and develops a mathematical model and a computational approach for SCC flow through reinforced formworks. In order to decrease high computational times needed to simulate castings through reinforced elements, an innovative approach to model the reinforced sections as porous media is proposed here. In the previous work, this numerical model is proved able to simulate the free-surface flow of non-Newtonian fluids through the reinforcement networks. In the present study, the applicability of the model on the concrete flow will finally be proved. The large-scale form-filling experiments with SCC will be conducted and the experiments will be simulated using the proposed numerical model. The numerical model will then be validated through the comparison of the experimental results and the results of the numerical simulations. T2 - 7th RILEM International Conference on Self-Compacting Concrete and 1st RILEM International Conference on Rheology and Processing of Construction Materials CY - Paris, France DA - 02.09.2013 KW - Porous medium KW - Rheology KW - Numerical modelling KW - Reinforcement PY - 2013 SN - 978-2-35158-137-7 SN - 978-2-35158-138-4 SP - 229 EP - 236 PB - RILEM Publishing S.A.R.L CY - Paris, France AN - OPUS4-37442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Vasilic, Ksenija A1 - Geiker, M. A1 - Hattel, J. A1 - Martinie, L. A1 - Martys, N. A1 - Roussel, N. A1 - Spangenberg, J. ED - Roussel, N. ED - Gram, A. T1 - Advanced methods and future perspectives N2 - The one-phase methods described in Chapter 2 were shown to be able to predict casting to some extent, but could not depict segregation, sedimentation and blockage occurring during flow. On the other hand, the distinct element methods described in Chapter 3 did not take into account the presence of two phases in the system and describes concrete as distinct elements interacting through more or less complex laws. A reliable numerical model of a multiphase material behaviour shall take into account both phases (solid and liquid). From the numerical point of view, concrete flow shall be seen therefore as the free surface flow of a highly-concentrated suspension of rigid grains. KW - SCC KW - Numerical simulation PY - 2014 SN - 978-94-017-8883-0 U6 - https://doi.org/10.1007/978-94-017-8884-7_5 VL - 15 SP - 125 EP - 146 PB - Springer Netherlands AN - OPUS4-37443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vasilic, Ksenija T1 - A numerical model for simulations of concrete casting N2 - In the last decades, numerical simulations of fresh concrete flow have gained importance in concrete industry. They showed a potential to become a tool for prediction of concrete casting and to help engineers to avoid expensive mistakes on site. A promising field for application of numerical modelling is casting of Self-Compacting Concrete (SCC), since the main area of application of SCC are complex and highly-reinforced building elements. Simulations of fresh concrete flow involve complex mathematical models and time-consuming computations. In case of casting simulations, the simulation time is additionally significantly increased because each reinforcement bar occurring in succession has to be considered one by one. This is particularly problematic in case of SCC casting, since this type of concrete is typically used for heavily-reinforced structural members. With the aim to decrease simulation time and to come closer to a practical simulation tool, we proposed an innovative modelling approach that models a zone with arrays of the reinforcement bars as a porous medium (PM). By defining characteristic parameters of the PM, its influence on the flow can be defined. This approach simplifies the geometry to be modelled and significantly decreases the computational time. The present contribution provides a brief description the proposed numerical model and of the conducted validation studies. The applicability of the model on fresh concrete is verified through the comparison between experimental measurements and numerical simulations. T2 - WMRIF 5th International Workshop for Young Scientists CY - Tsukuba, Japan DA - 07.11.2016 KW - Fresh concrete KW - CFD simulation KW - Rheology KW - Casting KW - Reinforcement PY - 2016 AN - OPUS4-38514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Vasilić, Ksenija T1 - A Numerical Model for Self-Compacting Concrete Flow through Reinforced Sections: a Porous Medium Analogy N2 - This thesis addresses numerical simulations of self-compacting concrete (SCC) castings and suggests a novel modelling approach that treats reinforcement zones in a formwork as porous media. As a relatively new field in concrete technology, numerical simulations of fresh concrete flow can be a promising aid to optimise casting processes and to avoid on-site casting incidents by predicting the flow behaviour of concrete during the casting process. The simulations of fresh concrete flow generally involve complex mathematical modelling and time-consuming computations. In case of a casting prediction, the simulation time is additionally significantly increased because each reinforcement bar occurring in succession has to be considered one by one. This is particularly problematic when simulating SCC casting, since this type of concrete is typically used for heavily reinforced structural members. However, the wide use of numerical tools for casting prediction in practice is possible only if the tools are user-friendly and simulations are time-saving. In order to shorten simulation time and to come closer to a practical tool for casting prediction, instead to model steel bars one by one, this thesis suggests to model zones with arrays of steel bars as porous media. Consequently, one models the flow of SCC through a reinforcement zone as a free-surface flow of a non-Newtonian fluid, propagating through the medium. By defining characteristic parameters of the porous medium, the influence on the flow and the changed (apparent) behaviour of concrete in the porous matrix can be predicted. This enables modelling of any reinforcement network as a porous zone and thus significantly simplifies and fastens simulations of reinforced components’ castings. Within the thesis, a computational model for SCC flow through reinforced sections was developed. This model couples a fluid dynamics model for fresh concrete and the macroscopic approach for the influence of the porous medium (formed by the rebars) on the flow. The model is implemented into a Computational Fluid Dynamics software and validated on numerical and experimental studies, among which is a large-scale laboratory casting of a highly reinforced beam. The apparent rheology of concrete within the arrays of steel bars is studied and a methodology to determine unknown input parameters for the porous medium is suggested. Normative tables defining characteristic porous medium parameters as a function of the topology of the rebar zone for different reinforcement cases are generated. Finally, the major contribution of this work is the resulting numerical package, consisting of the numerical solver and the parameter library. The thesis concludes on the ability of the porous medium analogy technique to reliably predict the concrete casting behaviour, while being significantly easier to use and far less time consuming than existing tools. N2 - Die Arbeit behandelt die numerische Modellierung des Fließverhaltens von selbst-verdichtendem Beton (SVB) in bewehrten Schalungselementen. Die numerische Simulation des Fließens von Frischbeton kann eine vielversprechende Unterstützung bei der Optimierung von Befüllvorgängen sein, indem diese bereits im Vorfeld vorhergesagt werden. Die Simulation des Fließens von Frischbeton verwendet komplizierte mathematische Modelle und zeitintensive Rechenoperationen. Darüber hinaus wird die Simulationszeit für die Vorhersage des Füllvorgangs zusätzlich deutlich verlängert, weil aufeinanderfolgende Bewehrungsstäbe einzeln zu berücksichtigen sind. Das ist insbesondere für die Simulation von SVB ein entscheidendes Problemfeld, da SVB oft gerade für hochbewehrte Bauteile verwendet wird. Dennoch ist ein weitreichender Einsatz von numerischen Hilfsmitteln bei der Vorhersage von Füllprozessen nur denkbar, wenn die Anwenderfreundlichkeit und eine Zeitersparnis gewährleistet werden können. Um die Simulationszeit zu verkürzen und näher an eine anwenderfreundliche Lösung für die Vorhersage von Füllprozessen zu kommen, wird als Alternative zur einzelnen Modellierung aller Stahlstäbe in dieser Arbeit vorgeschlagen, Zonen mit Bewehrungsstäben als poröse Medien zu modellieren. Infolgedessen wird das Fließen von SVB durch bewehrte Zonen als Strömung eines nicht-Newton’schen Fluides durch ein poröses Medium betrachtet. Durch die Definition charakteristischer Parameter des porösen Mediums kann das veränderte Verhalten des Betons in der porösen Matrix vorhegesagt werden. Dies ermöglicht die Modellierung beliebiger Bewehrungszonen und vereinfacht und beschleunigt folglich die numerische Simulation bewehrter Bauteile. Im Rahmen der Arbeit wird ein Rechenmodell für das Fließverhalten von SVB durch bewehrte Schalungszonen entwickelt. Das Modell verkoppelt das Strömungsverhalten von Beton mit dem makroskopischen Ansatz für den Einfluss von porösen Medien, welche in diesem Fall die Bewehrungsstäbe ersetzen. Das entwickelte Modell wird in eine CFD-Software implementiert und anhand mehrerer numerischer und experimenteller Studien validiert, darunter auch ein maßstabsgetreues Fließexperiment eines hochbewehrten Balkens. Darüber hinaus wird die scheinbare Rheologie des Betons innerhalb der Anordnung der Stahlstäbe untersucht und daraus eine Methode zur Bestimmung unbekannter Parameter für das poröse Medium vorgeschlagen. Es werden hierfür auch normative Tabellen generiert, die die charakteristischen Eigenschaften der porösen Medien für unterschiedliche Bewehrungsanordnungen abbilden. Zuletzt ist der Hauptbeitrag dieser Arbeit das resultierende Numerikpaket, bestehend aus dem numerischen Solver einschließlich des implementierten Modells sowie der Parameterbibliothek. Im Abschluss werden die Verlässlichkeit der Vorhersage von Füllvorgängen durch die Analogie zu porösen Medien erörtert sowie Schlussfolgerungen zur deutlichen Ersparnis an Aufwand und Zeit gegenüber herkömmlichen Methoden vorgenommen. T3 - BAM Dissertationsreihe - 144 KW - porous medium KW - self-compacting concrete KW - rheology KW - numerical modelling KW - CFD KW - reinforcement KW - poröses Medium KW - selbstverdichtender Beton KW - Rheologie KW - numerische Modellierung KW - Bewehrung PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-357833 SN - 978-3-9817502-6-3 SN - 1613-4249 VL - 144 SP - 1 EP - 175 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-35783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -