TY - JOUR A1 - Golze, Manfred A1 - Müller, Andreas A1 - Recknagel, Angelika A1 - Steffen, Bernd A1 - Boley, N. A1 - van der Veen, A. T1 - Interlinkages and recognition of proficiency testing schemes PY - 2000 SN - 0949-1775 SN - 1432-0517 PB - Springer CY - Berlin AN - OPUS4-1063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nieuwenkamp, G. A1 - Wessel, R. M. A1 - van der Veen, A.M.H. A1 - Ziel, P. R. A1 - Han, Q. A1 - Tuma, Dirk A1 - Woo, J.-C. A1 - Fuko, J.T. A1 - Szilágyi, N. A1 - Büki, T. A1 - Konopelko, L. A1 - Kustikov, Y.A. A1 - Popova, T.A. A1 - Pankratov, V.V. A1 - Pir, M.N. A1 - Nazarov, E.V. A1 - Ehvalov, L.V. A1 - Timofeev, A.U. A1 - Kuzmina, T.A. A1 - Meshkov, A.V. A1 - Valková, M. A1 - Pätoprsty, V. A1 - Downey, M. A1 - Vargha, G. A1 - Brown, A. A1 - Milton, M. T1 - International comparison CCQM-K77: Refinery gas N2 - Refinery gas is a complex mixture of hydrocarbons and non-combustible gases (e.g., carbon monoxide, carbon dioxide, nitrogen, helium). It is obtained as part of the refining and conversion of crude oil. This key comparison aims to evaluate the measurement capabilities for these types of mixtures. The results of the key comparison indicate that the analysis of a refinery-type gas mixture is for some laboratories a challenge. Overall, four laboratories (VSL, NIM, NPL and VNIIM) have satisfactory results. The results of some participants highlight some non-trivial issues, such as appropriate separation between saturated and unsaturated hydrocarbons, and issues with the measurement of nitrogen, hydrogen and helium. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA). DatesIssue 1A (Technical Supplement 2012) KW - Ringversuch KW - Raffineriegas KW - Chromatographische Analyse PY - 2012 U6 - https://doi.org/10.1088/0026-1394/49/1A/08003 SN - 0026-1394 SN - 1681-7575 VL - 49 IS - 08003 SP - 1 EP - 71 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-25931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Boley, N. A1 - van der Veen, A.M.H. A1 - Robouch, P. A1 - Golze, Manfred A1 - van de Kreeke, Johannes A1 - Örnemark, U. A1 - Tylee, B. T1 - Comparability of PT schemes - what did we learn from COEPT? N2 - Abstract The use of proficiency testing schemes (PTS) by laboratories as an integral part of their quality system has been increasing in recent years. Accreditation bodies, regulators and the laboratories’ customers are increasingly using results from PTS in their relationship with laboratories. There are many PTS available in Europe in analytical chemistry; EPTIS indicates over 400. The comparability of these PTS is now a real issue, as many organisers of PTS move into new markets. The COEPT project has systematically demonstrated (in four technical sectors – water, soil, food and occupational hygiene), that there are many similarities between PTS in each sector. For example, nearly all use the z-score as a performance index. One significant difference between many PTS is the value used for the term s in the z-score equation, and this gives a range of evaluations for the same data point. Despite this, the agreement between PTS in the same sector for the evaluation of data is approximately 85%. COEPT has given us a basis for establishing the comparability of PTS and showing us where further harmonisation could occur. KW - Proficiency testing KW - Comparability KW - Harmonisation PY - 2006 SN - 0949-1775 SN - 1432-0517 VL - 11 IS - 8-9 SP - 391 EP - 399 PB - Springer CY - Berlin AN - OPUS4-14162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Culleton, L.P. A1 - Brown, A. A1 - Murugan, A. A1 - Van der Veen, A. A1 - Van Osselen, D. A1 - Ziel, P. R. A1 - Li, J. A1 - Tuma, Dirk A1 - Schulz, Gert A1 - Näther, Stephanie A1 - Arrhenius, K. A1 - Kühnemuth, D. A1 - Beránek, J. A1 - Fuko, J. A1 - Val'ková, M. T1 - Results of an international comparison on the analysis of real nonconventional energy gases N2 - The requirement for a metrological infrastructure to ensure the interchangability of 'nonconventional’ energy gases within existing European infrastructure1 was the driving force behind the work undertaken in the three-year EMRP Characterisation of energy gases project EMRP ENG01 (June 2010 - May 2013). As part of work package one of the project, Standards and methods were used to perform composition and impurity measurements on samples of real energy gases collected from around Europe. The aim of this study was to compare the results obtained from different labs, and thereby provide an evaluation of the labs’ capabilities and provide insight into the feasibility of different analytical methodologies for use with future measurements. KW - Energy gases KW - Real samples KW - Sampling KW - Analysis PY - 2013 SN - 1754-2928 IS - July SP - 1 EP - 28 PB - Queen's Printer and Controller of HMSO CY - Teddington, Middlesex, UK AN - OPUS4-29449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Duewer, D. L. A1 - Sander, L. C. A1 - Wise, S. A. A1 - Philipp, Rosemarie A1 - Hein, Sebastian A1 - Hackenberg, R. A1 - Polzer, J. A1 - Avila, M. A. A1 - Serrano, V. A1 - Kakoulides, E. A1 - Alexopoulos, C. A1 - Giannikopoulou, P. A1 - Chan, P. A1 - Lee, H. A1 - Tang, H. A1 - Tang, P. A1 - Yip, Y. A1 - Lu, T. A1 - Cheow, P. S. A1 - Teo, T. L. A1 - Sega, M. A1 - Rolle, F. A1 - Baek, S. A1 - Kim, B. A1 - Lee, S. A1 - Cabillic, J. A1 - Fallot, C. A1 - Hua, T. A1 - Dazhou, C. A1 - Changjun, Y. A1 - Chunxin, L. A1 - Hongmei, L. A1 - Lippa, K. A1 - Itoh, N. A1 - Quinn, L. A1 - Prevoo-Franzsen, D. A1 - Fernandes-Whaley, M. A1 - Gören, A. C. A1 - Gökcen, T. A1 - Gündüz, S. A1 - Krylov, A. A1 - Mikheeva, A. A1 - Baldan, A. A1 - van der Hout, J. W. A1 - van der Veen, A. M. H. T1 - CCQM-K131 Low-polarity analytes in a multicomponent organic solution: Polycyclic aromatic hydrocarbons (PAHs) in acetonitrile N2 - Solutions of organic analytes of known mass fraction are typically used to calibrate the measurement processes used to determine these compounds in matrix samples. Appropriate value assignments and uncertainty calculations for calibration solutions are critical for accurate measurements. Evidence of successful participation in formal, relevant international comparisons is needed to document measurement capability claims (CMCs) made by national metrology institutes (NMIs) and designated institutes (DIs). To enable NMIs and DIs to update or establish their claims, in 2015 the Organic Analysis Working Group (OAWG) sponsored CCQM-K131 "Low-Polarity Analytes in a Multicomponent Organic Solution: Polycyclic Aromatic Hydrocarbons (PAHs) in Acetonitrile". Polycyclic aromatic hydrocarbons (PAHs) result from combustion sources and are ubiquitous in environmental samples. The PAH congeners, benz[a]anthracene (BaA), benzo[a]pyrene (BaP), and naphthalene (Nap) were selected as the target analytes for CCQM-K131. These targets span the volatility range of PAHs found in environmental samples and include potentially problematic chromatographic separations. Nineteen NMIs participated in CCQM-K131. The consensus summary mass fractions for the three PAHs are in the range of (5 to 25) μg/g with relative standard deviations of (2.5 to 3.5) %. Successful participation in CCQM-K131 demonstrates the following measurement capabilities in determining mass fraction of organic compounds of moderate to insignificant volatility, molar mass of 100 g/mol up to 500 g/mol, and polarity pKow < −2 in a multicomponent organic solution ranging in mass fraction from 100 ng/g to 100 μg/g: (1) value assignment of primary reference standards (if in-house purity assessment carried out), (2) value assignment of single and/or multi-component organic solutions, and (3) separation and quantification using gas chromatography or liquid chromatography. KW - Benz[a]anthracene (BaA) KW - Benzo[a]pyrene (BaP) KW - Gas chromatography (GC) KW - Isotope dilution (ID) KW - Liquid chromatography (LC) KW - Mass spectrometry (MS) KW - Naphthalene (Nap) KW - Organic calibration solution KW - Polycyclic aromatic hydrocarbon (PAH) PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-471442 SN - 0026-1394 SN - 1681-7575 VL - 56 IS - 1A SP - 08003, 1 EP - 102 PB - IOP Science AN - OPUS4-47144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhou, Z. A1 - Han, Q. A1 - Wang, D. A1 - Macé, T. A1 - Kipphardt, Heinrich A1 - Maiwald, Michael A1 - Tuma, Dirk A1 - Uehara, S. A1 - Akima, D. A1 - Shimosaka, T. A1 - Jung, J. A1 - Oh, S.-H. A1 - van der Veen, A. A1 - van Wijk, J.I.T. A1 - Ziel, P. R. A1 - Konopelko, L. A1 - Valkova, M. A1 - Mogale, D.M. A1 - Botha, A. A1 - Brewer, P. A1 - Murugan, A. A1 - Minnaro, M.D. A1 - Miller, M. A1 - Guenther, F. A1 - Kelly, M.E. T1 - CCQM K101 Final report international comparison CCQM-K101:Oxygen in nitrogen-a track B comparison and that the matrix contains argon N2 - This key comparison aims to assess the capabilities of the participants to determine the amount-of-substance fraction oxygen in nitrogen. The GAWG has classified this as a track B comparison, due to the unexpected 50 μmol/mol argon mole fraction content of the transfer standards, which effects the achievable performance of some measurement techniques such a GC-TCD. The separation of oxygen and argon is challenging, and not all systems in use are equally well designed for it. As this analytical challenge due to a substantial fraction of argon in the transfer standards became a reality, the Gas Analysis Working Group (GAWG) decided to qualify this key comparison as a regular key comparison and not as a core comparison, which may be used to support calibration and measurement capabilities (CMCs) for oxygen in nitrogen, or for oxygen in nitrogen mixtures containing argon only (see also the section on support to CMCs). KW - CCQM-K101 KW - Gas analysis PY - 2016 UR - http://iopscience.iop.org/article/10.1088/0026-1394/53/1A/08013 SN - 1681-7575 SN - 0026-1394 VL - 53 IS - Techn Suppl SP - 08013, 1 EP - 71 PB - IOP publishing AN - OPUS4-40013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oudwater, R. J. A1 - van Wijk, J. I. T. A1 - Persijn, S. A1 - Wessel, R. M. A1 - van der Veen, A. M. H. A1 - Mace, T. A1 - Sutour, C. A1 - Couette, J. A1 - Milton, M. A1 - Harling, A. A1 - Vargha, G. A1 - Uprichard, I. A1 - Haerri, H.-P. A1 - Niederhauser, B. A1 - Tuma, Dirk A1 - Maiwald, Michael A1 - Boissière, Claudia T1 - Final report on EURAMET QM-S8: Analysis of impurities in pure and balance gases used to prepare primary standard gas mixtures by the gravimetric method N2 - This project concerns the purity analysis of nitrogen as used in reference gas mixture preparation. This project was carried out without adding impurities to the gas used for this comparison, and is therefore more representative to evaluate the analysis of CO, CO2, CH4, O2, Ar and H2O impurities in high purity nitrogen. The analysis of the amount–of–substance fraction water was optional. Two 50 litre high purity nitrogen cylinders were purchased from a well-qualified supplier of specialty gases. The listed components were expected to be present in the pure nitrogen at the target levels as a result of the purification of the nitrogen. From the start of this comparison it was clear that the comparison may not lead to reference values for the constituents analysed. The results indicate that analyses of high purity gases are often limited by the limits of detection of analytical equipment used. The reports of the participating laboratories also indicate that there is no agreed method of determination of the uncertainty on a detection Limit value. The results provide useful information on the Performance of participants. For all analysed components there is reasonable agreement in results for LNE, VSL, Metas and NPL. For BAM only the Argon result is in agreement. KW - Gas analysis KW - Nitrogen KW - Purity analysis PY - 2013 U6 - https://doi.org/10.1088/0026-1394/50/1A/08023 SN - 0026-1394 SN - 1681-7575 VL - 50 IS - 08023 SP - 1 EP - 58 PB - Institute of Physics Publishing CY - Bristol AN - OPUS4-35896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - van der Hout, J. W. A1 - van der Veen, A. M. H. A1 - Ziel, P. R. A1 - Kipphardt, Heinrich A1 - Tuma, Dirk A1 - Maiwald, Michael A1 - Fernández, T. E. A1 - Gómez, C. A1 - Cieciora, D. A1 - Ochman, G. A1 - Dias, F. A1 - Silvino, V. A1 - Macé, T. A1 - Sutour, C. A1 - Marioni, F. A1 - Ackermann, A. A1 - Niederhauser, B. A1 - Fükő, J. A1 - Büki, T. A1 - Szilágyi, Z. N. A1 - Tarhan, T. A1 - Engin, E. T1 - International Comparison Euramet.QM-K111 – Propane in Nitrogen N2 - This key comparison aims to assess the core capabilities of the participants in gas analysis. Such competences include, among others, the capabilities to prepare Primary Standard gas Mixtures (PSMs), perform the necessary purity analysis on the materials used in the gas mixture preparation, the verification of the composition of newly prepared PSMs against existing ones, and the capability of calibrating the composition of a gas mixture. According to the Strategy for Key Comparisons of the Gas Analysis Working Group, this key comparison is classified as an RMO track A key comparison. The artefacts were binary mixtures of propane in nitrogen at a nominal amount-of-substance fraction level of 1000 μmol/mol. The values and uncertainties from the gravimetric gas mixture preparation were used as key comparison reference values (KCRVs). Each transfer standard had its own KCRV. The results are generally good. All results are within ± 1 % of the KCRV. KW - EURAMET.QM-K111 KW - Propane in nitrogen PY - 2017 U6 - https://doi.org/10.1088/0026-1394/54/1A/08020 SN - 0026-1394 VL - 54 IS - Technical Supplement SP - 08020, 1 EP - 34 PB - IOP Science AN - OPUS4-44471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - van der Veen, A. M H A1 - Zalewska, E. T. A1 - Kipphardt, Heinrich A1 - Beelen, R. R. A1 - Tuma, Dirk A1 - Maiwald, Michael A1 - Fükő, J. A1 - Büki, T. A1 - Szilágyi, Z. N. A1 - Beránek, J. A1 - Cieciora, D. A1 - Ochman, G. A1 - e.t al., T1 - Metrologia International Bureau of Weights and Measures (BIPM), find out more - KEY COMPARISON International comparison CCQM-K118 natural gas N2 - CCQM-K118 was an international key comparison on natural gas composition with two types of gases, i.e., a low calorific hydrogen-enriched natural gas and a high calorific LNG type of gas. There were 14 participating laboratories. The traveling standards (i.e., 14 mixtures each) were obtained from an external source and checked for homogeneity and stability before and after the participants' measurements at the two coordinating laboratories. The data evaluation was performed using a consensus value and a laboratory effect model. The results of the participants were benchmarked against a key comparison reference value computed from the largest consistent subset (LCS) of the submitted results, adjusted for the differences between the travelling standards. For the first time in a key comparison in gas analysis, the model included a term to account for excess variability in the LCS. Most of the participants reported one or a few (slightly) discrepant results. Partly this is due to the heterogeneity and heteroscedasticity of the datasets. In all, the results in this key comparison demonstrate the good comparability of the national measurement standards for natural gas composition maintained by the participating NMIs. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA). To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database https://www.bipm.org/kcdb/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - CCQM-K PY - 2022 U6 - https://doi.org/10.1088/0026-1394/59/1A/08017 SN - 0026-1394 VL - 59 IS - 1A PB - IOP Publishing LTD AN - OPUS4-56308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -