TY - CONF A1 - Weber, Mike A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar A1 - Zencker, Uwe A1 - Völzke, Holger A1 - Schulze, Dietmar T1 - Testing and numerical simulation of elastomeric seals under consideration of time dependent effects N2 - Due to delays in the siting procedure to establish a deep geological repository for spent nuclear fuel and high level waste and in construction of the already licensed Konrad repository for low and intermediate level waste, extended periods of interim storage will become more relevant in Germany. BAM is involved in most of the cask licensing procedures and is responsible for the evaluation of cask-related long-term safety issues. Elastomeric seals are widely used as barrier seals for containers for low and intermediate level radioactive waste. In addition they are also used as auxiliary seals in spent fuel storage and transportation casks (dual purpose casks (DPC)). To address the complex requirements resulting from the described applications, BAM has initiated several test programs for investigating the behavior of elastomeric seals. These include experiments concerning the hyperelastic and viscoelastic behavior at different temperatures and strain rates, the low temperature performance down to -40°C, the influence of gamma irradiation and the aging behavior. The first part of the paper gives an overview of these tests, their relevant results and their possible impact on BAM’s work as a consultant in the framework of approval and licensing procedures. The second part presents an approach of the development of a finite element model using the finite element code ABAQUS®. The long-term goal is to simulate the complex elastomeric behavior in a complete lid closure system under specific operation and accident conditions. T2 - ASME 2016 Pressure Vessels & Piping Conference (PVP2016) CY - Vancouver, BC, Canada DA - 17.07.2016 KW - Elastomeric seals KW - Testing KW - Low temperature behavior KW - Aging KW - Simulation KW - Time dependent effects PY - 2016 SN - 978-0-7918-5045-9 VL - 7 SP - Paper 63192, 1 EP - 10 AN - OPUS4-37046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger T1 - Extending interim storage of spent nuclear fuel: what are the needs and consequences? N2 - This presentation addresses the current German policy in nuclear waste management and illustrates significant changes throughout the last decades. With the reset of the high level waste repository siting process in 2013 the need for extending interim storage beyond initial license periods will become a future challenge. For that purpose knowledge needs to be enhanced and data gaps need to be closed timely. In addition, international collaboration in R&D and regulatory improvements are explained. T2 - NDC2016 7th Annual Nuclear Decommissioning Conference CY - Manchester, UK DA - 31.05.2016 KW - Nuclear waste management KW - Diposal KW - Storage cask KW - Safety KW - Extended storage PY - 2016 AN - OPUS4-36353 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger T1 - Integration across storage, transportation and disposal – important elements of the German program N2 - This presentation addresses the following issues. Unexpected changes in national nuclear policy have significantly affected spent fuel management strategies. The initial German spent fuel and HLW disposal concept has been delayed and finally “reset” by federal law in 2013. Repository site selection criteria and procedures will be defined by the Disposal Commission’s report end of June 2016. Final site selection should be finished by 2031. The consistent German concept of dry interim storage in dual purpose casks has proven to be a safe and secure spent fuel management strategy. The need for the extended interim storage of spent fuel and HLW casks towards disposal implicates additional challenges for the nuclear waste management strategy in Germany. Recently, governmental research programs have been adjusted to address technical and scientific issues also in the predisposal area. Interim storage, subsequent transportation, and final disposal are closely linked. Integrated approaches concerning waste package designs and operations are supposed to be beneficial for the establishment of efficient long-term spent fuel and HLW management strategies. T2 - Reset of U.S. Nuclear Waste Management Strategy and Policy Meeting CY - Washington, D.C., USA DA - 17.05.2016 KW - Nuclear waste management KW - spent fuel storage KW - extended storage KW - nuclear waste disposal PY - 2016 AN - OPUS4-36354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger A1 - Sorenson, K. B. T1 - Issues on Aging of Spent Fuel Storage Systems N2 - The Bundesanstalt für Materialforschung und –prüfung (BAM) and Sandia National Laboratories (SNL) entered into a Memorandum of Understanding (MOU) in September 2012 to foster technical collaborations in the areas associated with the backend of the commercial nuclear fuel cycle. Specifically, the focus is on packaging, transportation, and storage of commercial spent nuclear fuel. The institutes meet about twice each year, alternating between institutes. This provides the opportunity for staff members from the host organization more exposure to technical issues that are of concern internationally and to collaborate with technical experts working on similar problems. Since 2012, the focus of the meetings has been on technical issues associated with extended dry storage and subsequent transportation of commercial spent fuel. Topics range from hydride effects on cladding integrity, spent fuel response during Normal Conditions of Transport (NCT), finite element analyses of fuel and cask response to accident conditions, bolt and seal behavior over extended periods of time, and corrosion associated with bolts, metallic seals, and stainless steel canisters. This MOU has provided an effective leverage for technical collaboration. For example, SNL is funding (through DOE), Savannah River National Laboratories (SRNL) to look at bolt and seal degradation issues. SRNL has an MOU with BAM to collaborate on bolt and seal degradation during extended storage. Likewise, Sandia and BAM are collaborating with the EC Joint Research Center on an International Nuclear Energy Research Initiative (I-NERI) to investigate spent fuel behavior when subjected to mechanical loadings. This important work will provide insight into failure mechanisms, as well as spent fuel release fractions, given a breach of the cladding wall. This presentation provides an overview of high ranked technical issues associated with extended storage and subsequent transportation, as well as the work underway at BAM and SNL that are addressing these issues. T2 - 7th US/German Workshop on Salt Repository Research, Design, and Operation CY - Washington, DC, USA DA - 07.09.2016 KW - Spent Fuel KW - Ageing KW - Storage PY - 2016 AN - OPUS4-37318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nagelschmidt, Sven A1 - Probst, Ulrich A1 - Völzke, Holger A1 - Wolff, Dietmar T1 - Long-term investigations of metal seals for storage casks of radioctive materials N2 - The Bundesanstalt für Materialforschung und –prüfung (BAM) is a federal institute for materials research and testing in Germany and has been involved in the qualification and safety evaluation procedures of metal seals from the early beginning of the interim storage licensing procedures for radioactive materials, stored in dual purpose casks. Regarding this subject, BAM investigates the long-term behavior of metal seals under the influence of temperature using experimental data and analytical approaches. The development of numerical models is in progress as well. Systematic experimental investigations performed by BAM indicate a continuous decrease of the remaining seal force and the usable resilience considering the leak tightness. Hence, there is a fundamental interest of describing time and temperature dependency to gain predictable values for the long-term behavior and to achieve reliable results with help of short-term tests. The paper gives an overview about the sealing principle, test program and test results of metal seals of the type HELICOFLEX® HN200. The aging effect, respectively the long-term behavior in dependency of time and temperature, are introduced for two different outer liner materials, aluminum and silver. T2 - PVP ASME Conference CY - Vancouver, Canada DA - 17.07.2016 KW - Long-Term Behaviour KW - Metal Seal KW - Metal Gasket PY - 2016 SN - 978-0-7918-5045-9 VL - 7 SP - 63596-1 EP - 63596-5 AN - OPUS4-38039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kasparek, Eva A1 - Völzke, Holger T1 - Non-Heat Generating Legacy Waste - New Strategies for Older Vessels N2 - The German repository “Konrad” is approved for the final storage of approximately 300.000 m³ of non-heat generating radioactive waste considering also the expected residues from operation and decommissioning of current power plants. According to the latest survey as constituted end of 2014, a large proportion of this volume already exists, of which 100.288 m³ are fully loaded packages. As prerequisite for their “Konrad” acceptance, the vessels have to be designed against operational and accidental conditions of the site and be manufactured according to adequate quality assurance programs. The respective safety assessment performed by BAM on behalf of the Federal Office for Radiation Protection is a major challenge especially for those casks that had been produced and loaded already some decades ago. Typically, they were manufactured in big numbers over a longer period of time involving a lot of constructional and management changes. This fact in combination with the previously rather low documentation standards often causes relevant uncertainties about the specific physical and geometrical characteristics of the cask materials and components as well as about details concerning their whole assemblage. This paper highlights current assessment strategies for such older vessels including cubic steel sheet containers as well as cylindrical thick-walled casks. As compliance with each “Konrad”-requirement can hardly be shown independently, only integrated approaches promises success: First, a broader concept of data collection has to be implemented that allows closing documentation gaps by linking dispersed and diverse data, e.g. delivery slips and handwritten fabrication records, by including plausibility considerations as well as random inspection programs. Thereby, the relevant properties of all applied casks have to be identified and their potential range should be quantified as accurately as possible. This knowledge is necessary to define one or more representative configurations of the cask as the base for design testing. The actual investigation program must enable to track the influence of deviations and determine safety margins especially in the likely case that not the most conservative setting of all cask features can be tested. The paper evaluates the respective ongoing efforts of industrial applicants and summarizes BAM experiences and associated research projects. T2 - 18th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Kobe, Japan DA - 18.09.2016 KW - Requalification KW - Low and medium level radioactive waste KW - Final disposal container KW - Legacy waste KW - Konrad repository PY - 2016 SP - Paper 1014, 1 EP - 9 AN - OPUS4-38892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger T1 - Research activities at BAM related to extended spent fuel and HLW storage N2 - This presentation starts with a brief overview about the current situation of spent nuclear fuel and high level waste storage in Germany followed by a discussion of the expected timeline towards final disposal. Furthermore an overview is presented about research programmes for radioactive waste disposal and also extended interim storage issues due to the delay of the national repository siting procedure. In the second part of the presentation BAM research activities related to extended interim storage are addressed. This includes the status and preliminary results of proactive R&D projects concerning metal seals, degradation effects of polymers used as neutron shielding materials and finally elastomer seals. T2 - RIC 2016 - 28th Annual regulatory information conference CY - North Bethesda, Maryland, USA DA - 08.03.2016 KW - Spent Fuel KW - Extended interim storage KW - Radioactive waste KW - Degradation effects PY - 2016 UR - https://ric.nrc-gateway.gov/docs/abstracts/volzkeh-w22-hv.pdf AN - OPUS4-35614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger T1 - Safety demonstrations with regard to extended interim storage N2 - This presentation addresses safety aspects concerning dual purpose casks for transportation and storage of spent fuel and high level radioactive waste. The long term performance of casks and their safety relevant components like sealed lid systems and the long term performance of cask internals, especially spent fuel assemblies are discussed. Transportation after interim storage is another key issue and due to the fact of delayed disposal projects current interim storage periods need to be extended causing additional safety demonstration needs for longer periods of time. Regarding this situation present BAM research activities in this area and their preliminary outcomes are presented. T2 - 5. RAM-Behältersicherheitstage CY - Berlin DA - 16.03.2016 KW - Interim storage KW - Radioactive waste KW - Spent fuel KW - Safety PY - 2016 AN - OPUS4-35615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger T1 - Zusätzliche Anforderungen und Sicherheitsnachweise für eine verlängerte Zwischenlagerung von BE- und HAW-Behältern N2 - Bisherige Betriebserfahrungen und Erkenntnisse lassen die grundsätzliche Eignung der Transport- und Lagerbehälter auch über 40 Jahre hinaus erwarten. Eine Verlängerung der genehmigten Zwischenlagerdauer erfordert eine Neugenehmigung. Hierbei sind die zu diesem Zeitpunkt sicherheitstechnisch relevanten Eigenschaften der tatsächlich vorhandenen Inventare und Behälter zu berücksichtigen. Sicherheitstechnische Nachweise sind auf Grundlage belastbarer Daten und Erkenntnisse zu führen. Diese müssen rechtzeitig verfügbar sein (z.B. Betriebserfahrungen oder zusätzliche F&E-Programme z.B. zu Behälterdichtsystemen oder Inventarverhalten). Alterungsmanagementprogramme und periodische Sicherheits-überprüfungen während der Zwischenlagerung haben sowohl für die verlängerte Zwischenlagerung als auch für nachfolgende Transporte eine erhebliche Bedeutung.Die Schaffung eines spezifischen Regelwerks für die verlängerte Zwischenlagerung von Transport- und Lagerbehältern und deren nachfolgendem Abtransport unter Berücksichtigung der Anforderungen aus beiden Verwendungsbereichen erscheint sinnvoll. Eine verlängerte Zwischenlagerung dient ausschließlich der Überbrückung bis zur Endlagerung. Hierbei sollten die bestehenden Behälter und Inventare frühzeitig in die Überlegungen zur Definition von Anforderungen für die Endlagerung einbezogen werden. Die internationalen Entwicklungen und Untersuchungen im Bereich der längerfristigen Zwischenlagerung sollten zur Nutzung von Synergieeffekten weiter verfolgt, ausgewertet und mitgestaltet werden. T2 - Endlager-Symposium 2016 CY - Munich, Germany DA - 04.02.2016 KW - Verlängerte Zwischenlagerung KW - Extended interim storage KW - Bestrahlte Brennelemente KW - Spent Nuclear Fuel KW - Behälter für radioaktive Stoffe KW - Radioactive waste containers PY - 2016 AN - OPUS4-35413 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger A1 - Wolff, Dietmar T1 - Spent Nuclear Fuel and HLW Storage towards Disposal - Challenges and Perspectives of an Integrated Approach - N2 - This paper describes and discusses the major challenges of spent fuel management in Germany after the phase-out of nuclear electricity generation was decided in 2011 and a new repository siting procedure was implemented in 2013. Consequences from those decisions which were legally founded by amendments of the German Atomic Energy Act (AtG) result in the need to transfer all remaining spent fuel from limited reactor operation (last reactor shutdown until the end of 2022) into casks for subsequent dry interim storage on-site. Storage licenses are generally issued site-specific considering specific dual purpose casks (DPC) and their inventories and they are generally limited to 40 years so far. But the need for extending the interim storage period in the future has become obvious. Even though, this may not be an issue to be solved already today questions about additional safety demonstrations will arise as soon as licenses need to be extended. Certainly, these questions will ask for reliable data about the long term performance and safety of structures, systems, and components, e. g. the long term performance of cask components and materials like bolted closure systems including metal seals, or fuel rod behaviour concerning cladding materials under stress and temperature conditions. In case of dual purpose casks for storage and transportation this includes aspects on how to demonstrate transportability during or after several decades of interim storage. Long term investigations often require plenty of time and therefore need to be initiated timely. T2 - PATRAM 2016 The 18th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Kobe, Japan DA - 18.09.2016 KW - Storage KW - Spent Fuel KW - Disposal PY - 2016 UR - http://www.patram2016.org/ SN - 978-4-88898-270-2 SP - Paper 5006 AN - OPUS4-40300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -