TY - JOUR A1 - Unnikrishnakurup, Sreedhar A1 - Kidangan, R. T. A1 - P. Vengara, N. A1 - Balasubramaniam, Krishnan A1 - Rajagopal, P. A1 - Phani Prabhakar, K. V. A1 - Padmanabham, G. T1 - Application of infrared thermography technique for the monitoring of cold metal transfer (CMT) joining of aluminium to galvanized steel N2 - In this study, the feasibility of using non-contact Infrared thermography as a potential tool to monitor the CMT welding process is explored. The presence of internal defects such as porosity, lack of filler material deposition and formation of improper weld bead produce perturbations in the surface temperature which can be identified using an Infrared thermography technique. We present recent results obtained from online monitoring of the the dissimilar joining using CMT weld brazing of Aluminum and Steel using a transmission mode measurement approach. The effect of loss of zinc coating on the weldability of the cold metal transfer joining of aluminum to galvanised steel was investigated. A correlation between measured online thermal indications with the weld anomalies is successfully attempted and the results are compared with the conventional post-weld NDT inspection methods. T2 - 19th World Conference on Non-Destructive Testing (WCNDT 2016) CY - Munich, Germany DA - 13 June 2016 KW - Infrared thermography KW - CMT welding KW - Weld defects KW - Online monitoring PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-389155 UR - http://ndt.net/?id=19475 SN - 1435-4934 VL - 21 IS - 7 SP - 1 EP - 8 PB - NDT.net CY - Kirchwald AN - OPUS4-38915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unnikrishnakurup, Sreedhar A1 - Myrach, Philipp A1 - Polomski, Benjamin A1 - Le Claire, Elisabeth A1 - Vengara, N. A1 - Balasubramaniam, Krishnan A1 - Ziegler, Mathias T1 - Thermographic crack detection in hot steel surfaces N2 - The detection and characterization of surface cracks in steel specimens prior to damage is a technologically and economically highly significant task and is of utmost importance when it comes to safety-relevant structures. In steel production where steel billets at high temperatures have to be inspected while moving a number of well-established NDT methods cannot be applied. Laser thermography however is a promising candidate to serve as a fast, non-contact and remote tool in this case. We present a study that shows that the crack detection capabilities of laser thermography can be extended also to specimens at high temperature. A combination of inductive and laser heating allows to systematically study the contrast formation as well as the optimization of the important measurement parameters. The experiments are accompanied by FEM simulations that provide a better insight of the physical correlations and support the experimental developments. The aim of these studies is to develop a system with high inspection speed and detection performance to be in-line operated under the hostile environment of steel production lines. T2 - 19th World Conference on Non-Destructive Testing (WCNDT 2016) CY - Munich, Germany DA - 13.06.2016 KW - In-line Monitoring KW - Laser Infrared thermography KW - Cracks KW - Induction heating KW - Steel billets KW - FEM simulation PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-389161 UR - http://ndt.net/?id=19573 SN - 1435-4934 VL - 21 IS - 7 SP - 1 EP - 8 PB - NDT.net CY - Kirchwald AN - OPUS4-38916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unnikrishnakurup, Sreedhar A1 - Rouquette, Sebastien A1 - Soulie, Fabien A1 - Fras, Gilles T1 - Estimation of heat flux parameters during static gas tungsten arc welding spot under argon shielding N2 - A multi-physics modelling of a static Gas Tungsten Arc Welding (GTAW) operation has been established in order to estimate the heat flux exchanged between the arc plasma and the work-piece. The heat flux was described with a Gaussian function where two parameters required to be estimated: process efficiency and radial distribution. An inverse heat transfer problem (ihtp) has been developed in the aim to estimate these parameters from experimental data. Levenberg-Marquardt algorithm was used as the regularization method in addition to an iterative process. The experiment consisted in a static spot weld with GTAW process. The weld spot was on for 5 s under Argon shielding gas, 2.4 mm pure tungsten electrode on a SS304L disc. Temperatures were measured with thermocouples and weld pool growth monitored with a high speed camera. The experimental data were used to solve the ihtp what led to values such as 0.7 for process efficiency and average radial distribution of 1.8 mm. KW - Gas tungsten arc welding KW - Numerical simulation of welding KW - Heat flux estimation KW - Inverse heat transfer problem PY - 2017 U6 - https://doi.org/10.1016/j.ijthermalsci.2016.12.008 SN - ISSN 1290-0729 VL - 114 SP - 205 EP - 212 PB - Elsevier Masson SAS AN - OPUS4-38905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kidangan, R. T. A1 - Unnikrishnakurup, Sreedhar A1 - P. Vengara, N. A1 - Balasubramaniam, Krishnan A1 - Rajagopal, P. A1 - Phani Prabhakar, K. V. A1 - Padmanabham, G. A1 - Riedel, F. A1 - Puschmann, M. T1 - Online monitoring of cold metal transfer (CMT) process using infrared thermography N2 - Online (passive) thermographic inspection of overlap joints of aluminium and zinc coated steel sheets made by cold metal Transfer weld brazing process was explored. Different experimental Trials were conducted for demonstrating the feasibility of thermographic inspection to detect the porosities, improper weld bead and to differentiate the pre weld temperature. The whole process was monitored using infrared cameras in different wavelength region. Image analysis algorithms were developed to reconstruct the thermal images that contain the signatures of the weld defects and to extract the pre weld temperature and ist evolution with distance from the centre of the weld torch. Post-weld radiography lends strong Support to the observations. KW - Infrared thermography KW - Dissimilar joints KW - Online monitoring KW - Cold metal transfer process PY - 2016 U6 - https://doi.org/10.1080/17686733.2016.1229330 SN - 1768-6733 SN - 2116-7176 VL - 14 IS - 1 SP - 68 EP - 78 PB - Taylor & Francis AN - OPUS4-38910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unnikrishnakurup, Sreedhar A1 - Thomas, R. A1 - Balasubramaniam, Krishnan A1 - Narayanan, L. A1 - Phanikumar, G. T1 - Dissimilar metal joint quality measurement using infrared thermography: Experimental and numerical approach for the application to CMT welding N2 - Joining of dissimilar material has become highly popular research subject in the automobile industry due to the reduced weight and thereby increasing the fuel efficiency. Infrared thermography can be used as a natural tool to measure the temperature near the welding region and correlate the distribution of temperature to the weld quality. In the present work the quality of the dissimilar welded sample is identified using the temperature distribution in the vicinity of the weld pool region. A numerical model for CMT continues welding process has been modeled and simulated for the first time and compared with the experimental measurement. T2 - The 13th International Conference on Quantitative Infrared Thermography - QIRT 2016 CY - Gdansk, Poland DA - 04.07.2016 KW - Online monitoring KW - CMT welding KW - Dissimilar joint KW - FEM PY - 2016 UR - https://www.ndt.net/?id=20704 U6 - https://doi.org/10.21611/qirt.2016.056 SP - 389 EP - 390 PB - Gdansk University of Technology CY - Gdansk AN - OPUS4-39078 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Puthiyaveettil, N. A1 - Krishna, S. A1 - Kidangan, R. A1 - Unnikrishnakurup, Sreedhar A1 - Krishnamurthy, C. V. A1 - Ziegler, Mathias A1 - Myrach, Philipp A1 - Balasubramaniam, Krishnan T1 - In-line laser thermography for crack detection at elevated temperature: A Numerical modeling study N2 - The detection and characterization of cracks prior to damage is a technologically and economically highly significant task and is of very importance when it comes to safety-relevant structures. The evaluation of a components life is closely related to the presence of cracks in it. Laser thermography has already high capability for the detection of surface cracks and for the characterization of the geometry of artificial surface flaws in metallic samples. Crack detection in metallic samples at high temperature is highly significant in present manufacturing scenario. During the casting process of billets, surface cracks form, due to the suboptimal cooling rates. These cracks reduce value of the billet and must be removed using machining process after cooling. This secondary process increases cost of manufacturing. In this work we developed a heat transfer model for laser thermography to study the thermal contrast variation with increase in surface temperature using finite element method (FEM). Here we are mainly concentrating the capability of the scanning laser thermography in crack detection which are in elevated temperature and numerical modeling study of thermal contrast variation of crack with respect increase in metal surface temperature. This study is important to prove the capability of laser thermography for crack detection in elevated temperature. Since we are using High power CW Laser to local heating of the metal surface which can give relatively high thermal contrast even at elevated temperature compare to other heating source. Here we are modeled and simulated 2D laser scanning across a surface breaking crack and developed an algorithm to produce the vicinity of crack. The algorithm we developed applied for various surface temperature data. And validated the credibility of the algorithm with experimental data. T2 - 13th Quantitative Infrared Thermography Conference 2016 CY - Gdansk, Poland DA - 04.07.2016 KW - Thermal contrast KW - Laser thermography KW - Thermography KW - Surface cracks KW - Elevated temperatures KW - FEM PY - 2016 UR - http://www.ndt.net/article/qirt2016/papers/092.pdf U6 - https://doi.org/10.21611/qirt.2016.092 VL - 2016 SP - 588 EP - 596 PB - QIRT 2016 Proceedings AN - OPUS4-39105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unnikrishnakurup, Sreedhar A1 - Krishnamurthy, C. V. A1 - Balasubramaniam, Krishnan T1 - Monitoring TIG welding using Infrared Thermography - Simulations and Experiments N2 - In the current work a 3D model has been developed to predict the thermal cycles during the Tungsten Inert Gas welding of Aluminum 2219. This paper describes the step by step procedure adopted to get the actual cooling rate during the TIG welding process both experimentally and numerically. The model was developed in the COMSOL Finite Element Package and considered a Gaussian heat distribution. The developed model then validated using the experimental data collected in field experiments on actual large propellant tanks. Temperature measurements were performed using Infrared Camera. Results show a close comparison between model and experiment. KW - Image Analysis KW - Infrared Thermography KW - Online Monitoring KW - Finite Element Method PY - 2016 U6 - https://doi.org/10.15199/48.2016.04.02 SN - 0033-2097 IS - 4/2016 SP - 6 EP - 9 AN - OPUS4-35743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Puthiyaveettil, N. A1 - Kidangan, R. A1 - Unnikrishnakurup, Sreedhar A1 - Krishnamurthy, C. V. A1 - Ziegler, Mathias A1 - Myrach, Philipp A1 - Balasubramaniam, K. T1 - Numerical study of laser line thermography for crack detection at high temperature N2 - The detection of cracks before the failure is highly significant when it comes to safety-relevant structures. Crack detection in metallic samples at high surface temperature is one of the challenging situation in manufacturing industries. Laser thermography has already proved its detection capability of surface cracks in metallic samples at room temperature. In this work a continuous wave (CW) laser use to generate a laser, which is using to scan the metal surface with notch. The corresponding heat distribution on the surface monitored using infrared thermal (IR) camera. A simplified 3D model for laser thermography is developed and validated with experimental results. A dedicated image processing algorithm developed to improve the detectability of the cracks. To understand the dependency of surface temperature, laser power, laser scanning speed etc. in defect detection, we carried out parametric studies with our validated model. Here we Report the capability of laser thermography in crack detection at elevated temperature. T2 - 14th Quantitative InfraRed Thermography Conference CY - Berlin, Germany DA - 25.06.2018 KW - Thermal contrast KW - Laser Thermography KW - FEM KW - Surface cracks KW - NDT PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-499113 SN - 2371-4085 VL - 2018 SP - 685 EP - 686 AN - OPUS4-49911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krishna, S. K. P. A1 - Puthiyaveetil, N. A1 - Kidangan, R. A1 - Unnikrishnakurup, Sreedhar A1 - Ziegler, Mathias A1 - Myrach, Philipp A1 - Balasubramaniam, Krishnan A1 - Purushothaman, B. T1 - Raw data based image processing algorithm for fast detection of surface breaking cracks N2 - The aim of this work is to illustrate the contribution of signal processing techniques in the field of Non-Destructive Evaluation. A component’s life evaluation is inevitably related to the presence of flaws in it. The detection and characterization of cracks prior to damage is a technologically and economically significant task and is of very importance when it comes to safety-relevant measures. The Laser Thermography is the most effective and advanced thermography method for Non-Destructive Evaluation. High capability for the detection of surface cracks and for the characterization of the geometry of artificial surface flaws in metallic samples of laser thermography is particularly encouraging. This is one of the non- contacting, fast and real time detection method. The presence of a vertical surface breaking crack will disturb the thermal footprint. The data processing method plays vital role in fast detection of the surface and sub-surface cracks. Currently in laser thermographic inspection lacks a compromising data processing algorithm which is necessary for the fast crack detection and also the analysis of data is done as part of post processing. In this work we introduced a raw data based image processing algorithm which results precise, better and fast crack detection. The algorithm we developed gives better results in both experimental and modeling data. By applying this algorithm we carried out a detailed investigation Variation of thermal contrast with crack parameters like depth and width. The algorithm we developed is applied for various surface temperature data from the 2D scanning model and also validated credibility of algorithm with experimental data. T2 - QNDE conference 2016 - Review of progress in quantitative nondestructive evaluation CY - Atlanta, GA, USA DA - 18.07.2016 KW - Crack Detection KW - Laserthermografie KW - Thermografie KW - Risserkennung PY - 2017 SN - 978-0-7354-1474-7 U6 - https://doi.org/10.1063/1.4974723 SN - 0094-243X VL - 1806 IS - 1 SP - UNSP 140008, 1 EP - 9 PB - AIP Publishing CY - New York AN - OPUS4-39387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maierhofer, Christiane A1 - Krankenhagen, Rainer A1 - Röllig, Mathias A1 - Unnikrishnakurup, Sreedhar A1 - Monte, C. A1 - Adibekyan, A. A1 - Gutschwager, B. A1 - Knazowicka, L. A1 - Blahut, A. A1 - Gower, M. A1 - Lodeiro, M. A1 - Baker, G. A1 - Aktas, A. T1 - Einfluss thermischer und optischer Materialeigenschaften auf die Charakterisierung von Fehlstellen in Faserverbundwerkstoffen mit aktiven Thermografieverfahren T1 - Influence of thermal and optical material properties on the characterization of defects in fiber reinforced composites with active thermography methods N2 - In diesem Beitrag werden zerstörungsfreie Untersuchungen mittels aktiver Thermografie an Probekörpern aus CFK und GFK mit unterschiedlichen künstlichen Fehlstellen vorgestellt. Dabei wird die zeitliche und örtliche Temperaturverteilung nach der Erwärmung mit Blitzlampen oder mit einem Infrarot-Strahler mit einer Infrarot-Kamera erfasst. Zur späteren Rekonstruktion der Messdaten wurde ein numerisches Modell entwickelt. Dazu war die Bestimmung der thermophysikalischen und optischen Materialeigenschaften erforderlich, was in diesem Beitrag ebenfalls beschrieben wird. Die Ergebnisse der numerischen Modellierung werden mit den experimentellen Untersuchungen der aktiven Thermografie verglichen. Weiterhin werden die experimentellen Untersuchungen hinsichtlich der beiden Materialsysteme CFK und GFK und unter Berücksichtigung der Teiltransparenz des GFK-Materials sowie der unterschiedlichen Anregungsquellen bewertet. N2 - This paper presents results of the non-destructive evaluation of CFRP and GFRP test specimens with various artificial defects using active thermography. After heating the specimens with flash lamps or with an infrared radiator, the temporal and spatial resolved temperature distribution is recorded with an infrared camera. For the reconstruction of the experimental data, a numerical model was developed. For the numerical simulations, the thermal and optical material parameters had to be determined, which is described in this contribution as well. The results of numerical modelling are compared to experimental data of active thermography. Additionally, the experimental results are assessed related to the two materials CFRP and GFRP by considering the partial transmissivity of the GFRP material, and to the different excitation sources. T2 - Temperatur 2017 CY - Berlin, Germany DA - 17.05.2017 KW - Zerstörungsfreie Prüfung KW - Aktive Thermografie KW - Faserverbundwerkstoffe (CFK, GFK) KW - Numerische Simulation PY - 2017 U6 - https://doi.org/10.1515/teme-2017-0078 SN - 0171-8096 SN - 2196-7113 VL - 85 IS - 1 SP - 13 EP - 27 PB - DE GRUYTER CY - Oldenburg AN - OPUS4-42395 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maierhofer, Christiane A1 - Krankenhagen, Rainer A1 - Röllig, Mathias A1 - Unnikrishnakurup, Sreedhar A1 - Monte, C. A1 - Adibekyan, A. A1 - Gutschwager, B. A1 - Knazowicka, L. A1 - Blahut, A. A1 - Gower, M. A1 - Lodeiro, M. A1 - Baker, G. A1 - Aktas, A. T1 - Einfluss thermischer und optischer Materialeigenschaften auf die Charakterisierung von Fehlstellen in Faserverbundwerkstoffen mit aktiven Thermografieverfahren N2 - In diesem Beitrag werden zerstörungsfreie Untersuchungen mittels aktiver Thermografie an Probekörpern aus CFK und GFK mit unterschiedlichen künstlichen Fehlstellen vorgestellt. Dabei wird die zeitliche und örtliche Temperaturverteilung nach Erwärmung mit Blitzlampen oder mit einem Infrarot-Strahler mit einer Infrarot-Kamera erfasst. Zur Rekonstruktion der Messdaten wurde ein numerisches Modell entwickelt. Dazu war die Bestimmung der thermischen und optischen Materialeigenschaften erforderlich. N2 - This paper presents results of the non-destructive evaluation of CFRP and GFRP test specimens with various artificial defects using active thermography. After heating the samples with flash lamps or with an infrared radiator, the temporal and spatial resolved temperature distribution is recorded with an infrared camera. For the reconstruction of the experimental data, a numerical model was developed. For the numerical simulations, the thermal and optical material parameters had to be determined. T2 - Temperatur 2017 CY - Berlin, Germany DA - 17.05.2017 KW - CFK KW - GFK KW - aktive Thermografie KW - numerische Simulation KW - Emissivität PY - 2017 SN - 978-3-944659-04-6 SP - 15 EP - 20 AN - OPUS4-41088 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -