TY - JOUR A1 - Hioki, A. A1 - Kurahashi, M. A1 - Turk, G. A1 - Matschat, Ralf A1 - Recknagel, Sebastian T1 - CCQM-K33 Final Report - Determination of minor elements in steel N2 - The key comparison CCQM-K33 was organized by the Inorganic Analysis Working Group of the CCQM to test the abilities of the national metrology institutes to measure the mass fractions of minor elements in steel. Elements to be analysed were Cr, Mn, Ni and Mo in low alloy steel. The National Metrology Institute of Japan (NMIJ), the National Institute of Standards and Technology (NIST) and the Federal Institute for Materials Research and Testing (BAM) acted as the coordinating laboratories. The participants used various measurement methods, though many of them used ICP-AES. Generally speaking, the agreement of the results was very good for each measurand. PY - 2006 U6 - https://doi.org/10.1088/0026-1394/43/1A/08007 SN - 0026-1394 SN - 1681-7575 VL - 43 IS - Technical Supplement 1A 08007 SP - 1 EP - 15 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-12349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ma, L. A1 - Feng, L. A1 - Hioki, A. A1 - Cho, K.H. A1 - Vogl, Jochen A1 - Berger, Achim A1 - Turk, G. A1 - Macleod, S. A1 - Labarraque, G. A1 - Tong, W.F. A1 - Schiel, D. A1 - Yafa, C. A1 - Valiente, L. A1 - Konopelko, L.A. A1 - Quetel, C. A1 - Vermaercke, P. A1 - Manzano, J.V.L. A1 - Linsky, M. A1 - Cortés, E. A1 - Tangpitayakul, S. A1 - Plangsangmas, L. A1 - Bergamaschi, L. A1 - Hearn, R. T1 - International comparison of the determination of the mass fraction of cadmium, chromium, mercury and lead in polypropylene: the Comité Consultatif pour la quantité de matière pilot study CCQM-P106 KW - Cadmium KW - Chromium KW - Mercury KW - Lead KW - Polypropylene KW - CCQM PY - 2010 U6 - https://doi.org/10.1007/s00769-009-0574-z SN - 0949-1775 SN - 1432-0517 VL - 15 IS - 1 SP - 39 EP - 44 PB - Springer CY - Berlin AN - OPUS4-20787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kipphardt, Heinrich A1 - Matschat, Ralf A1 - Vogl, Jochen A1 - Gusarova, Tamara A1 - Czerwensky, Michael A1 - Heinrich, Hans-Joachim A1 - Hioki, A. A1 - Konopelko, L.A. A1 - Methven, B. A1 - Miura, T. A1 - Petersen, O. A1 - Riebe, Gundel A1 - Sturgeon, R. A1 - Turk, G.C. A1 - Yu, L. L. T1 - Purity determination as needed for the realisation of primary standards for elemental determination: status of international comparability N2 - Within the National Metrology Institutes (NMIs) and designated laboratories, an interlaboratory comparison, CCQM-P107, was conducted to verify the degree of international comparability concerning the results of purity analysis. The mass fractions of Ag, Bi, Cd, Cr, Ni, Tl at the lower mg/kg-level in a high purity zinc material were determined, but the real measurand in metrological sense was the sum of the six mass fractions. Homogeneity was investigated by glow discharge mass spectrometry, reference values were obtained using isotope dilution mass spectrometry. Six NMIs participated, contributing eight independent data sets. The agreement amongst the results of the participants, their median and the agreement with the reference values were usually excellent and in almost all cases below the target uncertainty of 30% relative. In this manner, the accuracy of results and the comparability between the participants was demonstrated to be established. KW - Interlaboratory comparison KW - Purity analysis KW - High purity metals KW - CCQM-P107 KW - Zinc PY - 2010 U6 - https://doi.org/10.1007/s00769-009-0557-0 SN - 0949-1775 SN - 1432-0517 VL - 15 IS - 1 SP - 29 EP - 37 PB - Springer CY - Berlin AN - OPUS4-20767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Kipphardt, Heinrich A1 - del Rocío Arvizu Torres, M. A1 - Manzano, J.V.L. A1 - Rodrigues, J.M. A1 - de Sena, R.C. A1 - Yim, Y.-H. A1 - Heo, S.W. A1 - Zhou, T. A1 - Turk, G.C. A1 - Winchester, M. A1 - Yu, L. L. A1 - Miura, T. A1 - Methven, B. A1 - Sturgeon, R. A1 - Jährling, R. A1 - Rienitz, O. A1 - Tunc, M. A1 - Can, S.Z. T1 - Final report of the key comparison CCQM-K72: Purity of zinc with respect to six defined metallic analytes N2 - KEY COMPARISON High purity elements can serve as a realization of the SI unit amount of substance for the specific element. Solutions prepared from high purity metals by applying gravimetric preparation and the concept of molar mass are used as 'calibration' solutions in many fields of analytical chemistry and provide the metrological basis in elemental analysis. Since ideal purity does not exist for real materials, the actual purity of the high purity material must be known with a specified uncertainty. As required uncertainties around 10-4 relative on the purity statement are not accessible in almost all cases by a direct measurement of the element in itself, the indirect approach is followed, where all elements excepting the matrix element itself are measured and their sum is subtracted from the value for ideal purity, which is 1 kg/kg. It was the aim of this comparison to demonstrate the capability of national metrology institutes and designated institutes to determine the purity of pure elements. In order to limit the effort within this comparison, only six metallic impurities (Ag, Al, Cd, Cr, Ni, Tl) in the low mg/kg range are considered in a zinc matrix. It has to be underlined here that the task was to measure the purity of zinc based on the determination of six analytes. The task is not trace analysis of specific analytes in zinc. This subtle distinction defines different measurands. The sample, pure Zn, was cut in pieces of cubic geometry for wet chemical analysis or of pin geometry for GDMS analysis and was sent to the participants. The comparison was run under the auspices of the Inorganic analysis Working Group (IAWG) of the CCQM and was piloted by the BAM Federal Institute for Materials Research and Testing, Berlin, Germany. The majority of the participants applied ICP-MS techniques and only two participants used additionally atomic absorption spectrometry. GDMS was used only by one participant. The observed spreads for the measurement results reported by the participants were significantly lower than those of the preceding study CCQM-P107 and were well below the target uncertainty of 30% relative. As a consequence, comparability within the participating laboratories is demonstrated to be established. The individual measurement results, mean values and medians derived were in all cases very consistent with the reference values obtained by IDMS and so the accuracy of the measurement results for the participating laboratories is as well demonstrated to be established. Especially with the results of CCQM-P62 and CCQM-P107 in mind, the outcome of CCQM-K72 can be considered as a big step forward in the community. CCQM is aware of the difference between a characterization based on only six analytes and a complete characterization. Therefore, the pilot study CCQM-P149 has been initiated and already started, which focuses on the fit-for-purpose approaches for the purity determination of metals (here: zinc) to be used as primary standards in elemental analysis. Another follow-up in the form of a pilot study on non-metal impurities is mandatory, because non-metal impurities such as oxygen, nitrogen and sulfur often make up the largest contributions. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - CCQM KW - Metrology KW - Purity PY - 2014 U6 - https://doi.org/10.1088/0026-1394/51/1A/08008 SN - 0026-1394 SN - 1681-7575 VL - 51 IS - 1A (Tech.Suppl. 2014) SP - 08008, 1 EP - 40 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-30772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hioki, A. A1 - Nonose, N. A1 - Liandi, M. A1 - Jingbo, C. A1 - Liuxing, F. A1 - Chao, W. A1 - Cho, K.H. A1 - Suh, J.K. A1 - Min, H.S. A1 - Lim, Y. A1 - Recknagel, Sebastian A1 - Koenig, Maren A1 - Vogl, Jochen A1 - De Sena, R.C. A1 - Dos Reis, L.A. A1 - Borinsky, M. A1 - Puelles, M. A1 - Hatamleh, N. A1 - Acosta, O. A1 - Turk, G. A1 - Rabb, S. A1 - Sturgeon, R. A1 - Methven, B. A1 - Rienitz, O. A1 - Jaehrling, R. A1 - Konopelko, L.A. A1 - Kustikov, Y.A. A1 - Kozyreva, S.B. A1 - Korzh, A.A. T1 - Final report of the key coamparison CCQM-K88: Determination of lead in lead-free solder containing silver and copper N2 - The CCQM-K88 key comparison was organized by the Inorganic Analysis Working Group of CCQM to test the abilities of the national metrology institutes to measure the mass fraction of lead in lead-free solder containing silver and copper. National Metrology Institute of Japan (NMIJ), National Institute of Metrology of China (NIM) and Korea Research Institute of Standards and Science (KRISS) acted as the coordinating laboratories. The participants used different measurement methods, though most of them used inductively coupled plasma optical emission spectrometry (ICP-OES) or isotope-dilution inductively coupled plasma mass spectrometry (ID-ICP-MS). Accounting for relative expanded uncertainty, comparability of measurement results was successfully demonstrated by the participating NMIs for the measurement of the mass fraction of lead in lead-free solder at the level of 200 mg/kg. It is expected that metals at mass fractions greater than approximately 100 mg/kg in lead-free solder containing silver and copper can be determined by each participant using the same technique(s) employed for this key comparison to achieve similar uncertainties mentioned in the present report. KW - CCQM KW - Metrology KW - IDMS PY - 2013 U6 - https://doi.org/10.1088/0026-1394/50/1A/08002 SN - 0026-1394 SN - 1681-7575 VL - 50 IS - 08002, 1A (Technical Supplement 2013) SP - 1 EP - 19 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-30457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Kipphardt, Heinrich A1 - Richter, Silke A1 - Bremser, Wolfram A1 - Arvizu Torres, M. A1 - Lara Manzano, J. A1 - Buzoianu, M. A1 - Hill, S. A1 - Petrov, P. A1 - Goenaga-Infante, H. A1 - Sargent, M. A1 - Fisicaro, P. A1 - Labarraque, G. A1 - Zhou, T. A1 - Turk, G. C. A1 - Winchester, M. A1 - Miura, T. A1 - Methven, B. A1 - Sturgeon, R. A1 - Jährling, R. A1 - Rienitz, O. A1 - Mariassy, M. A1 - Hankova, Z. A1 - Sobina, E. A1 - Krylov, A. I. A1 - Kustikov, Y. A. A1 - Smirnov, V. V. T1 - Establishing comparability and compatibility in the purity assessment of high purity zinc as demonstrated by the CCQM-P149 intercomparison N2 - For the first time, an international comparison was conducted on the determination of the purity of a high purity element. Participants were free to choose any analytical approach appropriate for their institute’s applications and services. The material tested was a high purity zinc, which had earlier been assessed for homogeneity and previously used in CCQM-K72 for the determination of six defined metallic impurities. Either a direct metal assay of the Zn mass fraction was undertaken by EDTA titrimetry, or an indirect approach was used wherein all impurities, or at least the major ones, were determined and their sum subtracted from ideal purity of 100 %, or 1 kg/kg. Impurity assessment techniques included glow discharge mass spectrometry, inductively coupled plasma mass spectrometry and carrier gas hot extraction/combustion analysis. Up to 91 elemental impurities covering metals, non-metals and semi-metals/metalloids were quantified. Due to the lack of internal experience or experimental capabilities, some participants contracted external laboratories for specific analytical tasks, mainly for the analysis of non-metals. The reported purity, expressed as zinc mass fraction in the high purity zinc material, showed excellent agreement for all participants, with a relative standard deviation of 0.011 %. The calculated reference value, w(Zn) = 0.999 873 kg/kg, was assigned an asymmetric combined uncertainty of + 0.000025 kg/kg and – 0.000028 kg/kg. Comparability amongst participating metrology institutes is thus demonstrated for the purity determination of high purity metals which have no particular difficulties with their decomposition / dissolution process when solution-based analytical methods are used, or which do not have specific difficulties when direct analysis approaches are used. Nevertheless, further development is required in terms of uncertainty assessment, quantification of non-metals and the determination of purity of less pure elements and/or for those elements suffering difficulties with the decomposition process. KW - Purity assessment KW - Direct metal assay KW - Impurity assessment KW - Non-metal analysis KW - High-purity elements KW - SI-traceability PY - 2018 U6 - https://doi.org/10.1088/1681-7575/aaa677 SN - 1681-7575 SN - 0026-1394 VL - 55 IS - 2 SP - 211 EP - 221 PB - Institute of Physics Publishing CY - Bristol AN - OPUS4-44257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rienitz, O. A1 - Schiel, D. A1 - Görlitz, V. A1 - Jährling, R. A1 - Vogl, Jochen A1 - Lara-Manzano, J.V. A1 - Zon, A. A1 - Fung, W.-H. A1 - Buzoianu, M. A1 - De Sena, R.C. A1 - Dos Reis, L.A. A1 - Valiente, L. A1 - Yim, Y.-H. A1 - Hill, S. A1 - Champion, R. A1 - Fisicaro, P. A1 - Bing, W. A1 - Turk, G.C. A1 - Winchester, M. R. A1 - Saxby, D. A1 - Merrick, J. A1 - Hioki, A. A1 - Miura, T. A1 - Suzuki, T. A1 - Linsky, M. A1 - Barzev, A. A1 - Máriássy, M. A1 - Cankur, O. A1 - Ari, B. A1 - Tunc, M. A1 - Konopelko, L.A. A1 - Kustikov, Y.A. A1 - Bezruchko, M. T1 - Final report on CCQM-K87: Mono-elemental calibration solutions N2 - The aim of this comparison was to demonstrate the capability of national metrology institutes to measure elemental mass fractions at a level of w(E) ≈ 1 g/kg as found in almost all mono-elemental calibration solutions. These calibration solutions represent an important link in traceability systems in inorganic analysis. Virtually all traceable routine measurements are linked to the SI through these calibration solutions. Every participant was provided with three solutions of each of the three selected elements chromium, cobalt and lead. This comparison was a joint activity of the Inorganic Analysis Working Group (IAWG) and the Electrochemical Analysis Working Group (EAWG) of the CCQM and was piloted by the Physikalisch-Technische Bundesanstalt (PTB, Braunschweig, Germany) with the help of the Bundesanstalt für Materialforschung und -prüfung (BAM, Berlin, Germany), the Centro Nacional de Metrología (CENAM, Querétaro, Mexico) and the National Institute of Standards and Technology (NIST, Gaithersburg, USA). A small majority of participants applied inductively coupled plasma optical emission spectrometry (ICP OES) in combination with a variety of calibration strategies (one-point-calibration, bracketing, calibration curve, each with and without an internal standard). But also IDMS techniques were carried out on quadrupole, high resolution and multicollector ICP-MS machines as well as a TIMS machine. Several participants applied titrimetry. FAAS as well as ICP-MS combined with non-IDMS calibration strategies were used by at least one participant. The key comparison reference values (KCRV) were agreed upon during the IAWG/EAWG meeting in November 2011 held in Sydney as the added element content calculated from the gravimetric sample preparation. Accordingly the degrees of equivalence were calculated. Despite the large variety of methods applied no superior method could be identified. The relative deviation of the median of the participants' results from the gravimetric reference value was equal or smaller than 0.1% (with an average of 0.05%) in the case of all three elements. KW - CCQM KW - Metrology KW - IDMS PY - 2012 U6 - https://doi.org/10.1088/0026-1394/49/1A/08010 SN - 0026-1394 SN - 1681-7575 VL - 49 IS - 08010, 1A (Technical Supplement 2012) SP - 1 EP - 104 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-30458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -