TY - JOUR A1 - Radunz, Sebastian A1 - Kraus, Werner A1 - Bischoff, F. A. A1 - Emmerling, Franziska A1 - Resch-Genger, Ute A1 - Tschiche, Harald T1 - Temperature- and Structure-Dependent Optical Properties and Photophysics of BODIPY Dyes N2 - We report on the temperature- and structural-dependent optical properties and photophysics of a set of boron dipyrromethene (BODIPY) dyes with different substitution patterns of their meso-aryl subunit. Single-crystal Xray diffraction analysis of the compounds enabled a classification of the dyes into a sterically hindered and a unhindered group. The steric hindrance refers to a blocked rotational motion of the aryl subunit around the bond connecting this moiety to the meso-position of the BODIPY core. The energy barriers related to this rotation were simulated by DFT calculations. As follows from the relatively low rotational barrier calculated to about 17 kcal/mol, a free rotation is only possible for sterically unhindered compounds. Rotational barriers of more than 40 kcal/mol determined for the sterically hindered compounds suggest an effective freezing of the rotational motion in These molecules. With the aid of temperature-dependent spectroscopic measurements, we could show that the ability to rotate directly affects the optical properties of our set of BODIPY dyes. This accounts for the strong temperature dependence of the fluorescence of the sterically unhindered compounds which show a drastic decrease in fluorescence quantum yield and a significant shortening in fluorescence lifetime upon heating. The optical properties of the sterically hindered compounds, however, are barely affected by temperature. Our results suggest a nonradiative deactivation of the first excited singlet state of the sterically unhindered compounds caused by a conical intersection of the potential energy surfaces of the Ground and first excited state which is accessible by rotation of the meso-subunit. This is in good agreement with previously reported deactivation mechanisms. In addition, our results suggest the presence of a second nonradiative depopulation pathway of the first excited singlet state which is particularly relevant for the sterically hindered compounds. KW - Fluorescence KW - Sensor KW - Switch KW - pH KW - BODIPY KW - Dye KW - Probe KW - Synthesis KW - Photophysics KW - Mechanism PY - 2020 U6 - https://doi.org/10.1021/acs.jpca.9b11859 SN - 1089-5639 VL - 124 IS - 9 SP - 1787 EP - 1797 PB - American Chemical Society AN - OPUS4-50639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radunz, Sebastian A1 - Andresen, Elina A1 - Würth, Christian A1 - Koerdt, Andrea A1 - Rune Tschiche, Harald A1 - Resch-Genger, Ute T1 - Simple self-referenced luminescent pH sensors based on upconversion nanocrystals and pH-sensitive fluorescent BODIPY dyes N2 - We present the design and fabrication of pH responsive ratiometric dual component sensor systems based on multicolor emissive upconversion nanoparticles (UCNP) and pH sensitive BODIPY dyes with tunable pKa values embedded into a polymeric hydrogel matrix. The use of NIR excitable NaYF4:Yb3+,Tm3+ UCNPs enables background free read-out. Furthermore, the spectrally matching optical properties of the UCNPs and the dyes allow the UCNPs to serve as excitation light source for the analyteresponsive BODIPY as well as intrinsic reference. The blue upconversion luminescence (UCL) of NaYF4:Yb3+,Tm3+ UCNPs excited at 980 nm, that overlaps with the absorption of the pH-sensitive fluorophore, provides reabsorption based excitation of the dye, the spectrally distinguishable green fluorescence of which is switched ON upon protonation, preventing photoinduced electron transfer (PET) within the dye moiety, and the pH-inert red UCL act as reference. The intensities ratios of the dye’s fluorescence and the analyte-inert red Tm3+ UCL correlate directly with pH, which was successfully utilized for Monitoring timedependent pH changes of a suspension of quiescent E. coli metabolizing D-glucose. KW - pH sensor KW - UpConversion PY - 2019 U6 - https://doi.org/10.1021/acs.analchem.9b01174 SN - 0003-2700 SN - 1520-6882 VL - 91 SP - 7756 EP - 7764 PB - acs publications AN - OPUS4-48490 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radunz, Sebastian A1 - Tschiche, Harald Rune A1 - Moldenhauer, Daniel A1 - Resch-Genger, Ute T1 - Broad range ON/OFF pH sensors based on pKa tunable fluorescent BODIPYs N2 - A set of highly fluorescent, pH-responsive boron dipyrromethene dyes covering the pH range of 5-12 is presented for broad range pH measurements in mixed aqueous-organic median and polymer matrices. Readout in the intensity Domain with low cost and miniaturized Instrumentation utilizes reversible protonation induced switching ON of their initially completely quenched flourescence mediated by photoinduced electron Transfer. All dyes, rationally designed to reveal closely matching Absorption and Emission properties, are accessible via facile two-step reactions in Overall yields of up to 20%. By modifying the Substitution pattern of the meso-Aryl substiuent, the pKa values could be fine-tuned from 6 to 11. Integration of these molecules into polymeric films by a simple mixing procedure yielded reversible and longterm stable pH sensors for naked eye detection. KW - Fluorescence KW - Sensor KW - PH KW - Dye KW - BODIPY KW - Synthesis KW - Quantification KW - Film KW - Quantum yield KW - Lifetime KW - PET PY - 2017 U6 - https://doi.org/10.1016/j.snb.2017.05.080 SN - 0925-4005 VL - 251 SP - 490 EP - 494 PB - Elsevier AN - OPUS4-41782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -