TY - CONF A1 - Sokolowski-Tinten, K. A1 - Barty, A. A1 - Boutet, S. A1 - Shymanovich, U. A1 - Bogan, M. A1 - Marchesini, S. A1 - Hau-Riege, S. A1 - Stojanovic, N. A1 - Bonse, Jörn A1 - Tobey, R. A1 - Ehrke, H. A1 - Cavalleri, A. A1 - Duesterer, S. A1 - Frank, M. A1 - Bajt, S. A1 - Schulz, J. A1 - Seibert, M. A1 - Hajdu, J. A1 - Treusch, R. A1 - Chapman, H. T1 - Short-pulse laser induced transient structure formation and ablation studied with time-resolved coherent XUV-scattering N2 - XUV- and X-ray free-electron-lasers (FEL) combine short wavelength, ultrashort pulse duration, spatial coherence and high intensity. This unique combination of properties opens up new possibilities to study the dynamics of non-reversible phenomena with ultrafast temporal and nano- to atomic-scale spatial resolution. In this contribution we wish to present results of time-resolved experiments performed at the XUV-FEL FLASH (HASYLAB/Hamburg) aimed to investigate the nano-scale structural dynamics of laser-irradiated materials. Thin films and fabricated nano-structures, deposited on Si3N4-membranes, have been excited with ultrashort optical laser pulses. The dynamics of the non-reversible structural evolution of the irradiated samples during laser-induced melting and ablation has been studied in an optical pump - XUV-probe configuration by means of single-shot coherent scattering techniques (i.e. diffraction imaging [1]). In a first set of experiments we investigated the formation of laser induced periodic surface structures (LIPSS) on the surface of thin Si-films (thickness 100 nm). In a simplified view LIPPS are generated as a result of interference between the incident laser pulse and surface scattered waves which leads to a periodically modulated energy deposition. Time-resolved scattering using femtosecond XUV-pulses (with a wavelength of 13.5 nm and 7 nm) allowed us to directly follow LIPSS evolution on an ultrafast time-scale and with better than 40 nm spatial resolution. The observed scattering patterns show almost quantitative agreement with theoretical predictions [2] and reveal that the LIPSS start to form already during the 12 ps pump pulse. In the second set of measurements we studied picosecond and femtosecond laser induced ablation and disintegration of fabricated nano-structures. Correlations of coherent diffraction patterns measured at various time delays to the pattern of the undisturbed object show that order in the structure is progressively lost starting from short length scales. This structural rearrangement progresses at close to the speed of sound in the material. Under certain circumstances (e.g. adequate sampling) it became also possible to reconstruct real-space images of the object as it evolves over time [3]. The possibility of femtosecond single-shot imaging of ultrafast dynamic processes with nanoscale resolution provides yet more details of the physical processes involved. [1] H. N. Chapman et al. Nature Phys. 2, 839 (2006). [2] J. F. Young et al., Phys. Rev. B 27, 1155 (1983). [3] A. Barty et al. Nature Phot. 2, 415 (2008). T2 - Fall meeting of the materials research society 2009 CY - Boston, MA, USA DA - 2009-11-30 KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures KW - Time-resolved coherent XUV scattering KW - Semiconductor KW - Silicon PY - 2010 U6 - https://doi.org/10.1557/PROC-1230-MM05-03 N1 - Serientitel: Materials Research Society symposium proceedings – Series title: Materials Research Society symposium proceedings VL - 1230E IS - Paper 1230-MM05-03 SP - 1 EP - 6 AN - OPUS4-21438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sokolowski-Tinten, K. A1 - Barty, A. A1 - Boutet, S. A1 - Shymanovich, U. A1 - Chapman, H. A1 - Bogan, M. A1 - Marchesini, S. A1 - Hau-Riege, S. A1 - Stojanovic, N. A1 - Bonse, Jörn A1 - Rosandi, Y. A1 - Urbassek, H. M. A1 - Tobey, R. A1 - Ehrke, H. A1 - Cavalleri, A. A1 - Düsterer, S. A1 - Redlin, H. A1 - Frank, M. A1 - Bajt, S. A1 - Schulz, J. A1 - Seibert, M. A1 - Hajdu, J. A1 - Treusch, R. A1 - Bostedt, C. A1 - Hoener, M. A1 - Möller, T. T1 - Short-pulse laser induced transient structure formation and ablation studied with time-resolved coherent XUV-scattering T2 - International high-power laser ablation conference CY - Santa Fe, USA DA - 2010-04-18 KW - Femtosecond laser ablation KW - Free electron lasers KW - Coherent scattering PY - 2010 SN - 978-0-7354-0828-9 N1 - Serientitel: AIP conference proceedings – Series title: AIP conference proceedings IS - 1278 SP - 373 EP - 379 PB - American Institute of Physics CY - Melville, NY, USA AN - OPUS4-22230 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Sokolowski-Tinten, K. A1 - Bonse, Jörn A1 - Barty, A. A1 - Chapman, H.N. A1 - Bajt, S. A1 - Bogan, M.J. A1 - Boutet, S. A1 - Cavalleri, A. A1 - Düsterer, S. A1 - Frank, M. A1 - Hajdu, J. A1 - Hau-Riege, S. A1 - Marchesini, S. A1 - Stojanonovic, N. A1 - Treusch, R. ED - Stoian, R. ED - Bonse, Jörn T1 - In-Situ Observation of the Formation of Laser-Induced Periodic Surface Structures with Extreme Spatial and Temporal Resolution N2 - Irradiation of solid surfaces with intense ultrashort laser pulses represents a unique way of depositing energy into materials. It allows to realize states of extreme electronic excitation and/or very high temperature and pressure and to drive materials close to and beyond fundamental stability limits. As a consequence, structural changes and phase transitions often occur along unusual pathways and under strongly nonequilibrium conditions. Due to the inherent multiscale nature—both temporally and spatially—of these irreversible processes, their direct experimental observation requires techniques that combine high temporal resolution with the appropriate spatial resolution and the capability to obtain good quality data on a single pulse/event basis. In this respect, fourth-generation light sources, namely, short wavelength and short pulse free electron lasers (FELs), are offering new and fascinating possibilities. As an example, this chapter will discuss the results of scattering experiments carried out at the FLASH free electron laser at DESY (Hamburg, Germany), which allowed us to resolve laser-induced structure formation at surfaces on the nanometer to submicron length scale and in temporal regimes ranging from picoseconds to several nanoseconds with sub-picosecond resolution. KW - Laser-induced periodic surface structures, LIPSS KW - Capillary waves KW - Time-resolved scattering KW - Pump-probe experiments KW - Free electron laser PY - 2023 SN - 978-3-031-14751-7 SN - 978-3-031-14752-4 U6 - https://doi.org/10.1007/978-3-031-14752-4_6 VL - 239 SP - 257 EP - 276 PB - Springer Nature Switzerland AG CY - Cham, Switzerland AN - OPUS4-57297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -