TY - CONF A1 - Esteban-Fernandez, Diego A1 - Traub, Heike A1 - Hutchinson, R. A1 - Jakubowski, Norbert A1 - Wilkins, J. A1 - Summerfield, L. A1 - McLachlin, K. T1 - High resolution laser ablation NWRimage system for single cell imaging N2 - The traceability and availability of nanoparticles enables their use to enhance a variety of nano-biological and nano-medicinal applications. The particular size and shape of nanoparticles determine the uptake rate and pathway into the cell, and therefore impact specific cell components and processes. Selecting specific particle types allows researchers to target the process or structure of interest, with minimal additional impact. This can be used for drug or DNA delivery, and is being explored for use in oncology. Understanding the different uptake mechanisms and impacted processes requires sub-cellular Imaging resolution to determine, for example, whether or not the nanoparticles are reaching the nucleus. Sub-cellular imaging has traditionally been challenging to achieve with laser ablation ICP-MS due to a lack of sensitivity at small spots. Bioimaging using LA-ICP-MS is a well-established technique, but usually applied on the tissue scale, which depends on larger spot areas where sensitivity is less problematic. The improved sensitivity and washout from the NWRimage has allowed faster imaging of smaller spots. The NWRimage also provides the possibility of true sub-micron spot sizes. This work compares the capabilities of standard laser Ablation (NWR213 system) with results from the NWRimage platform, which has been optimized for imaging applications. T2 - European Winter Conference on Plasma Spectrochemistry CY - St. Anton, Austria DA - 19.02.2017 KW - Laser ablation KW - Imaging KW - Nanoparticle PY - 2017 AN - OPUS4-39281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -