TY - JOUR A1 - Matschat, Ralf A1 - Haßler, J. A1 - Traub, Heike A1 - Dette, Angelika T1 - Multielement trace determination in SiC powders: assessment of interlaboratory comparisons aimed at the validation and standardization of analytical procedures with direct solid sampling based on ETV ICP OES and DC arc OES N2 - The members of the committee NMP 264 Chemical analysis of non-oxidic raw and basic materials of the German Standards Institute (DIN) have organized two interlaboratory comparisons for multielement determination of trace elements in silicon carbide (SiC) powders via direct solid sampling methods. One of the interlaboratory comparisons was based on the application of inductively coupled plasma optical emission spectrometry with electrothermal vaporization (ETV ICP OES), and the other on the application of optical emission spectrometry with direct current arc (DC arc OES). The interlaboratory comparisons were organized and performed in the framework of the development of two standards related to the determination of mass fractions of metallic impurities in powders and grain sizes of ceramic raw and basic materials by both methods. SiC powders were used as typical examples of this category of material. The aim of the interlaboratory comparisons was to determine the repeatability and reproducibility of both analytical methods to be standardized. This was an important contribution to the practical applicability of both draft standards. Eight laboratories participated in the interlaboratory comparison with ETV ICP OES and nine in the interlaboratory comparison with DC arc OES. Ten analytes were investigated by ETV ICP OES and eleven by DC arc OES. Six different SiC powders were used for the calibration. The mass fractions of their relevant trace elements were determined after wet chemical digestion. All participants followed the analytical requirements described in the draft standards. In the calculation process, three of the calibration materials were used successively as analytical samples. This was managed in the following manner: the material that had just been used as the analytical sample was excluded from the calibration, so the five other materials were used to establish the calibration plot. The results from the interlaboratory comparisons were summarized and used to determine the repeatability and the reproducibility (expressed as standard deviations) of both methods. The calculation was carried out according to the related standard. The results are specified and discussed in this paper, as are the optimized analytical conditions determined and used by the authors of this paper. For both methods, the repeatability relative standard deviations were <25%, usually ~10%, and the reproducibility relative standard deviations were <35%, usually ~15%. These results were regarded as satifactory for both methods intended for rapid analysis of materials for which decomposition is difficult and time-consuming. Also described are some results from an interlaboratory comparison used to certify one of the materials that had been previously used for validation in both interlaboratory comparisons. Thirty laboratories (from eight countries) participated in this interlaboratory comparison for certification. As examples, accepted results are shown from laboratories that used ETV ICP OES or DC arc OES and had performed calibrations by using solutions or oxides, respectively. The certified mass fractions of the certified reference materials were also compared with the mass fractions determined in the interlaboratory comparisons performed within the framework of method standardization. Good agreement was found for most of the analytes. KW - Inductively coupled plasma optical emission spectrometry KW - Electrothermal vaporization KW - ETV ICP OES KW - Direct current optical emission spectrometry KW - DC arc OES KW - Direct solid sampling technique KW - Silicon carbide powder KW - Method validation KW - Method standardization KW - Direkte Feststoffanalytik KW - Normung KW - Methodenvalidierung KW - Ringversuche KW - Siliciumcarbid PY - 2005 DO - https://doi.org/10.1007/s00216-005-3415-x SN - 1618-2642 SN - 1618-2650 VL - 383 IS - 7-8 SP - 1060 EP - 1074 PB - Springer CY - Berlin AN - OPUS4-10890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Höpken, C. A1 - Swart, Claudia A1 - Traub, Heike T1 - A fragment of a dichroic cage cup from Dülük Baba Tepesi/Doliche, Turkey KW - Diatretglas KW - LA-ICP-MS PY - 2008 SN - 0075-4250 VL - 50 SP - 303 EP - 306 CY - Corning, NY AN - OPUS4-18442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yang, Q.-C. A1 - Jochum, K.P. A1 - Stoll, B. A1 - Weis, U. A1 - Kuzmin, D. A1 - Wiedenbeck, M. A1 - Traub, Heike A1 - Andreae, M. O. T1 - BAM-S005 type A and B: new silicate reference glasses for microanalysis N2 - To test whether the silicate reference glasses BAM-S005-A and BAM-S005-B from BAM (The Federal Institute for Materials Research and Testing, Germany) are suitable materials for microanalysis, we investigated the homogeneity of these reference glasses using the microanalytical techniques EPMA, LA-ICP-MS and SIMS. Our study indicated that all major and most trace elements are homogeneously distributed at micrometre sampling scale in both types of glass. However, some trace elements (e.g., Cs, Cl, Cr, Mo and Ni) seem to be inhomogeneously distributed. We also determined the composition of BAM-S005-A and BAM-S005-B. The EPMA data of major elements confirmed the information values specified by the certificate. With the exception of Sr, Ba, Ce and Pb, our trace element data by LA-ICP-MS were also in agreement with the certified values within the stated uncertainty limits. The reasons for the discrepancy in these four elements are still unclear. In addition, we report new data for twenty-two further trace elements, for which the concentrations were not certified. Based on our investigation, we suggest that both of these materials are suitable for many microanalytical applications. KW - BAM-S005 KW - Microanalysis KW - Reference glasses KW - Homogeneity KW - Characterisation KW - Laser ablation ICP-MS KW - EPMA KW - SIMS KW - Glass KW - Reference material PY - 2012 DO - https://doi.org/10.1111/j.1751-908X.2012.00171.x SN - 1639-4488 SN - 1751-908X VL - 36 IS - 3 SP - 301 EP - 313 PB - Blackwell CY - Oxford AN - OPUS4-26563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kader, A. A1 - Kaufmann, Jan Ole A1 - Mangarova, D. B. A1 - Moeckel, J. A1 - Brangsch, J. A1 - Adams, L. C. A1 - Zhao, J. A1 - Reimann, C. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Buchholz, R. A1 - Karst, U. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Iron Oxide Nanoparticles for Visualization of Prostate Cancer in MRI N2 - Prostate cancer (PCa) is one of the most common cancers in men. For detection and diagnosis of PCa, non-invasive methods, including magnetic resonance imaging (MRI), can reduce the risk potential of surgical intervention. To explore the molecular characteristics of the tumor, we investigated the applicability of ferumoxytol in PCa in a xenograft mouse model in two different tumor volumes, 500 mm3 and 1000 mm3. Macrophages play a key role in tumor progression, and they are able to internalize iron-oxide particles, such as ferumoxytol. When evaluating T2*-weighted sequences on MRI, a significant decrease of signal intensity between pre- and post-contrast images for each tumor volume (n = 14; p < 0.001) was measured. We, furthermore, observed a higher signal loss for a tumor volume of 500 mm3 than for 1000 mm3. These findings were confirmed by histological examinations and laser ablation inductively coupled plasma-mass spectrometry. The 500 mm3 tumors had 1.5% iron content (n = 14; sigma = 1.1), while the 1000 mm3 tumors contained only 0.4% iron (n = 14; sigma = 0.2). In vivo MRI data demonstrated a correlation with the ex vivo data (R2 = 0.75). The results of elemental analysis by inductively coupled plasma-mass spectrometry correlated strongly with the MRI data (R2 = 0.83) (n = 4). Due to its long retention time in the blood, biodegradability, and low toxicity to patients, ferumoxytol has great potential as a contrast agent for visualization PCa. KW - Imaging KW - Nanoparticle KW - Cancer KW - Iron oxide KW - ICP-MS KW - Magnetic resonance imaging PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550075 DO - https://doi.org/10.3390/cancers14122909 VL - 14 IS - 12 SP - 1 EP - 13 PB - MDPI CY - Basel, Switzerland AN - OPUS4-55007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Anderhalten, L. A1 - Silva, R. V. A1 - Morr, A. A1 - Wang, S. A1 - Smorodchenko, A. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Mueller, S. A1 - Boehm-Sturm, P. A1 - Rodriguez-Sillke, Y. A1 - Kunkel, D. A1 - Hahndorf, J. A1 - Paul, F. A1 - Taupitz, M. A1 - Sack, I. A1 - Infante-Duarte, C. T1 - Different Impact of Gadopentetate and Gadobutrol on Inflammation-Promoted Retention and Toxicity of Gadolinium Within the Mouse Brain N2 - Objectives: Using a murine model of multiple sclerosis, we previously showed that repeated administration of gadopentetate dimeglumine led to retention of gadolinium (Gd) within cerebellar structures and that this process was enhanced with inflammation. This study aimed to compare the kinetics and retention profiles of Gd in inflamed and healthy brains after application of the macrocyclic Gd-based contrast agent (GBCA) gadobutrol or the linear GBCA gadopentetate. Moreover, potential Gd-induced neurotoxicity was investigated in living hippocampal slices ex vivo. Materials and Methods: Mice at peak of experimental autoimmune encephalomyelitis (EAE; n = 29) and healthy control mice (HC; n = 24) were exposed to a cumulative dose of 20 mmol/kg bodyweight of either gadopentetate dimeglumine or gadobutrol (8 injections of 2.5 mmol/kg over 10 days). Magnetic resonance imaging (7 T) was performed at baseline as well as at day 1, 10, and 40 post final injection (pfi) of GBCAs. Mice were sacrificed after magnetic resonance imaging and brain and blood Gd content was assessed by laser ablation-inductively coupled plasma (ICP)-mass spectrometry (MS) and ICP-MS, respectively. In addition, using chronic organotypic hippocampal slice cultures, Gd-induced neurotoxicity was addressed in living brain tissue ex vivo, both under control or inflammatory (tumor necrosis factor α [TNF-α] at 50 ng/μL) conditions. Results: Neuroinflammation promoted a significant decrease in T1 relaxation times after multiple injections of both GBCAs as shown by quantitative T1 mapping of EAE brains compared with HC. This corresponded to higher Gd retention within the EAE brains at 1, 10, and 40 days pfi as determined by laser ablation-ICP-MS. In inflamed cerebellum, in particular in the deep cerebellar nuclei (CN), elevated Gd retention was observed until day 40 after last gadopentetate application (CN: EAE vs HC, 55.06 ± 0.16 μM vs 30.44 ± 4.43 μM). In contrast, gadobutrol application led to a rather diffuse Gd content in the inflamed brains, which strongly diminished until day 40 (CN: EAE vs HC, 0.38 ± 0.08 μM vs 0.17 ± 0.03 μM). The analysis of cytotoxic effects of both GBCAs using living brain tissue revealed an elevated cell death rate after incubation with gadopentetate but not gadobutrol at 50 mM. The cytotoxic effect due to gadopentetate increased in the presence of the inflammatory mediator TNF-α (with vs without TNF-α, 3.15% ± 1.18% vs 2.17% ± 1.14%; P = 0.0345). Conclusions: In the EAE model, neuroinflammation promoted increased Gd retention in the brain for both GBCAs. Whereas in the inflamed brains, efficient clearance of macrocyclic gadobutrol during the investigated time period was observed, the Gd retention after application of linear gadopentetate persisted over the entire observational period. Gadopentetate but not gadubutrol appeared to be neurotoxic in an ex vivo paradigm of neuronal inflammation. KW - Imaging KW - ICP-MS KW - Gadolinium KW - Contrast agent KW - Laser ablation KW - Brain KW - Multiple sclerosis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546910 DO - https://doi.org/10.1097/RLI.0000000000000884 SN - 0020-9996/22/0000–0000 VL - 57 IS - 10 SP - 677 EP - 688 PB - Wolters Kluwer N.V. CY - Alphen aan den Rijn, The Netherlands AN - OPUS4-54691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cruz-Alonso, M. A1 - Fernandez, B. A1 - Álvarez, L. A1 - González-Iglesias, H. A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Pereiro, R. T1 - Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags N2 - An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma – mass spectrometry (ICP-MS).Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. KW - Metal nanoclusters KW - Fluorescence KW - Protein imaging KW - Thin tissue sections KW - Immunohistochemistry KW - Bioconjugation KW - Carbodiimide crosslinking KW - Laser ablation KW - Mass spectrometry PY - 2018 DO - https://doi.org/10.1007/s00604-017-2597-1 VL - 185 IS - 1 SP - 1 EP - 9 PB - Springer AN - OPUS4-44022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Büchner, T. A1 - Drescher, D. A1 - Merk, V. A1 - Traub, Heike A1 - Guttmann, P. A1 - Werner, St. A1 - Jakubowski, Norbert A1 - Schneider, G. A1 - Kneipp, J. T1 - Biomolecular environment, quantification, and intracellular interaction of multifunctional magnetic SERS nanoprobes N2 - Multifunctional composite nanoprobes consisting of iron oxide nanoparticles linked to silver and gold nanoparticles, Ag–Magnetite and Au–Magnetite, respectively, were introduced by endocytic uptake into cultured fibroblast cells. The cells containing the non-toxic nanoprobes were shown to be displaceable in an external magnetic field and can be manipulated in microfluidic channels. The distribution of the composite nanostructures that are contained in the endosomal system is discussed on the basis of surfaceenhanced Raman scattering (SERS) mapping, quantitative laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) micromapping, and cryo soft X-ray tomography (cryo soft-XRT). Cryo soft-XRT of intact, vitrified cells reveals that the composite nanoprobes form intra-endosomal aggregates. The nanoprobes provide SERS signals from the biomolecular composition of their surface in the endosomal environment. The SERS data indicate the high stability of the nanoprobes and of their plasmonic properties in the harsh environment of endosomes and lysosomes. The spectra point at the molecular composition at the surface of the Ag–Magnetite and Au–Magnetite nanostructures that is very similar to that of other Composite structures, but different from the composition of pure silver and gold SERS nanoprobes used for intracellular investigations. As shown by the LA-ICP-MS data, the uptake efficiency of the magnetite composites is approximately two to three times higher than that of the pure gold and silver nanoparticles. KW - Nanoparticles KW - SERS KW - Cell KW - LA-ICP-MS KW - X-ray tomography PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-371811 DO - https://doi.org/10.1039/c6an00890a SN - 0003-2654 VL - 141 IS - 17 SP - 5096 EP - 5106 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-37181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drescher, Daniela A1 - Zeise, Ingrid A1 - Traub, Heike A1 - Guttmann, P. A1 - Seifert, Stephan A1 - Büchner, Tina A1 - Jakubowski, Norbert A1 - Schneider, G. A1 - Kneipp, Janina T1 - In situ characterization of SiO2 nanoparticle biointeractions using BrightSilica N2 - By adding a gold core to silica nanoparticles (BrightSilica), silica-like nanoparticles are generated that, unlike unmodified silica nanoparticles, provide three types of complementary information to investigate the silica nano-biointeraction inside eukaryotic cells in situ. Firstly, organic molecules in proximity of and penetrating into the silica shell in live cells are monitored by surface-enhanced Raman scattering (SERS). The SERS data show interaction of the hybrid silica particles with tyrosine, cysteine and phenylalanine side chains of adsorbed proteins. Composition of the biomolecular corona of BrightSilica nanoparticles differs in fibroblast and macrophage cells. Secondly, quantification of the BrightSilica nanoparticles using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) micromapping indicates a different interaction of silica nanoparticles compared to gold nanoparticles under the same experimental conditions. Thirdly, the metal cores allow the investigation of particle distribution and interaction in the cellular ultrastructure by cryo nanoscale X-ray tomography (cryo-XT). In 3D reconstructions the assumption is confirmed that BrightSilica nanoparticles enter cells by an endocytotic mechanism. The high SERS intensities are explained by the beneficial plasmonic properties due to agglomeration of BrightSilica. The results have implications for the development of multi-modal qualitative and quantitative characterization in comparative nanotoxicology and bionanotechnology. KW - Silica nanoparticles KW - Surface-enhanced Raman scattering KW - X-ray tomography KW - LA-ICP-MS KW - Core–shell structures PY - 2014 DO - https://doi.org/10.1002/adfm.201304126 SN - 1616-301X SN - 1616-3028 VL - 24 IS - 24 SP - 3765 EP - 3775 PB - Wiley-VCH CY - Weinheim AN - OPUS4-30924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Larissa A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Drescher, Daniela A1 - Baranov, Vladimir A1 - Kneipp, Janina T1 - Trends in single-cell analysis by use of ICP-MS N2 - The analysis of single cells is a growing research field in many disciplines such as toxicology, medical diagnosis, drug and cancer research or metallomics, and different methods based on microscopic, mass spectrometric, and spectroscopic techniques are under investigation. This review focuses on the most recent trends in which inductively coupled plasma mass spectrometry (ICP-MS) and ICP optical emission spectrometry (ICP-OES) are applied for single-cell analysis using metal atoms being intrinsically present in cells, taken up by cells (e.g., nanoparticles), or which are artificially bound to a cell. For the latter, especially element tagged antibodies are of high interest and are discussed in the review. The application of different sample introduction systems for liquid analysis (pneumatic nebulization, droplet generation) and elemental imaging by laser ablation ICP-MS (LA-ICP-MS) of single cells are highlighted. Because of the high complexity of biological systems and for a better understanding of processes and dynamics of biologically or medically relevant cells, the authors discuss the idea of 'multimodal spectroscopies.' KW - Bioanalytical methods KW - Cell systems/single cell analysis KW - Mass spectrometry/ICP-MS PY - 2014 DO - https://doi.org/10.1007/s00216-014-8143-7 SN - 1618-2642 SN - 1618-2650 VL - 406 IS - 27 SP - 6963 EP - 6977 PB - Springer CY - Berlin AN - OPUS4-31717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Büchner, Tina A1 - Drescher, Daniela A1 - Traub, Heike A1 - Schrade, P. A1 - Bachmann, S. A1 - Jakubowski, Norbert A1 - Kneipp, Janina T1 - Relating surface-enhanced Raman scattering signals of cells to gold nanoparticle aggregation as determined by LA-ICP-MS micromapping N2 - The cellular response to nanoparticle exposure is essential in various contexts, especially in nanotoxicity and nanomedicine. Here, 14-nm gold nanoparticles in 3T3 fibroblast cells are investigated in a series of pulse-chase experiments with a 30-min incubation pulse and chase times ranging from 15 min to 48 h. The gold nanoparticles and their aggregates are quantified inside the cellular ultrastructure by laser ablation inductively coupled plasma mass spectrometry micromapping and evaluated regarding the surface-enhanced Raman scattering (SERS) signals. In this way, both information about their localization at the micrometre scale and their molecular nanoenvironment, respectively, is obtained and can be related. Thus, the nanoparticle pathway from endocytotic uptake, intracellular processing, to cell division can be followed. It is shown that the ability of the intracellular nanoparticles and their accumulations and aggregates to support high SERS signals is neither directly related to nanoparticle amount nor to high local nanoparticle densities. The SERS data indicate that aggregate geometry and interparticle distances in the cell must change in the course of endosomal maturation and play a critical role for a specific gold nanoparticle type in order to act as efficient SERS nanoprobe. This finding is supported by TEM images, showing only a minor portion of aggregates that present small interparticle spacing. The SERS spectra obtained after different chase times show a changing composition and/or structure of the biomolecule corona of the gold nanoparticles as a consequence of endosomal processing. KW - Gold nanoparticles KW - Surface-enhanced Raman scattering KW - LA-ICP-MS KW - Fibroblast KW - Cell KW - Particle aggregation KW - Endosome PY - 2014 DO - https://doi.org/10.1007/s00216-014-8069-0 SN - 1618-2642 SN - 1618-2650 VL - 406 IS - 27 SP - 7003 EP - 7014 PB - Springer CY - Berlin AN - OPUS4-31718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -