TY - GEN A1 - Traub, Heike A1 - Win, Tin A1 - Lück, Detlef A1 - Koch, Matthias A1 - Becker, Roland T1 - Evaluation and Development of Methods for the Analysis of Soils according to § 8 of the German Federal Soil Protection Act T2 - 7th International FZK/TNO Conference on Contaminated Soil ; 7th ConSoil 2000 CY - Leipzig, Germany DA - 2000-09-18 KW - Soil KW - Heavy metals KW - Cyanide KW - Chromium KW - Organic contaminants KW - Analytical methods KW - Standardization KW - National law PY - 2000 SN - 0-7277-2954-3 VL - 2 SP - 904 EP - 905 PB - Telford CY - London AN - OPUS4-876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Traub, Heike A1 - Scharf, Holger T1 - NH4NO3 extractable trace element contents of soil samples prepared for proficiency testing - a stability study N2 - In view of its intended use as a sample for proficiency testing or as a reference material the stability of the extractable trace element contents of a soil from an irrigation field was tested using the extraction with 1 mol/L ammonium nitrate solution according to DIN 19730. Therefore, changes of the extractability of sterilized and non sterilized soil samples stored at different temperatures were evaluated over a period of 18 months. Sets of bottles were kept at -20 °C, +4 °C, about +20 °C and +40 °C, respectively. The NH4NO3 extractable contents of Cd, Cr, Cu, Ni, Pb and Zn were determined immediately after bottling and then after 3, 6, 12 and 18 months with ICP-AES or ETAAS. Appropriate storage conditions are of utmost importance to prevent deterioration of soil samples prepared for the determination of NH4NO3 extractable trace element contents. Temperatures above +20 °C must be avoided. The observed changes in the extractability of the metals (especially for Cr and Cu) most likely could be related to thermal degradation of the organic matter of the soil. There is no need to sterilize dry soil samples, because microbiological activity in soils with a low moisture content appears to be negligible with regard to trace element mobilization. KW - Spurenelemente KW - Boden KW - Stabilität KW - Referenzmaterial PY - 2001 DO - https://doi.org/10.1007/s002160100748 SN - 0937-0633 VL - 370 IS - 2-3 SP - 270 EP - 274 PB - Springer CY - Berlin AN - OPUS4-1073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Traub, Heike A1 - Koch, Matthias A1 - Lück, Detlef A1 - Win, Tin A1 - Lehnik-Habrink, Petra A1 - Schultze, Karin A1 - Saring, U. A1 - Plagemann, R. T1 - Evaluierung von Verfahren für die Untersuchung von Böden nach § 8 Bundes-Bodenschutzgesetz (BBodSchG) (Forschungsbericht 299 71 224 / UBA-FB 000303) N2 - Evaluation of methods for the analysis of soils according to § 8 of the German Federal Soil Protection Act (BBodSchG) The German Federal Soil Protection Act establishes the conditions for effective soil protection and remediation of contaminated sites. In the German Federal Soil Protection and Contaminated Sites Ordinance (BBodSchV) limiting values and methods for the determination of environmentally harmful substances in soils are fixed. The aim of this project was to evaluate selected methods by comparative investigations and proficiency testing schemes. New methods for the determination of inorganic and organic pollutants should be developed and compared with the existing standard methods. Despite the widespread use of ICP-OES up to now no national or international standard is available for the determination of heavy metals in soil extracts with this analytical method. The influence of spectral and non spectral interferences on the accuracy of the results was systematically investigated, especially based on aqua regia soil extracts. Analyte concentration equivalents were determined, too. Based on these results a proposal for a standard was submitted to the corresponding working group of ISO TC 190.[...] KW - Evaluierung von Analyseverfahren KW - ICP-OES KW - Chrom(VI) KW - Cyanide KW - Säulenelution KW - Bodenluft KW - Vor-Ort-Analytik KW - PAK KW - OCP KW - PCB KW - PCP KW - Referenzmaterialien KW - Messunsicherheit PY - 2002 UR - http://www.umweltbundesamt.de/publikationen/evaluierung-von-verfahren-fuer-untersuchung-von SN - 1862-4804 SN - 0722-186X IS - 32 SP - 1 EP - 339 PB - Umweltbundesamt CY - Dessau-Roßlau AN - OPUS4-1760 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike T1 - Erste praktische Erfahrungen mit einem ETV-ICP-OES - System T2 - Anwenderseminar der Fa. Thermo Elemental CY - Neu-Isenburg, Germany DA - 2002-09-23 PY - 2002 AN - OPUS4-2945 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike T1 - Erste praktische Erfahrungen mit einem ETV ICP OES-System T2 - Anwenderseminar über die direkte Analyse von Festproben mit simultaner ICP-OES / Analyse organischer und anorganischer Proben mit elektrothermischer Verdampfung (ETV) und Lichtbogen-Emission CY - Neu-Isenburg, Deutschland DA - 2002-09-23 PY - 2002 AN - OPUS4-1932 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Matschat, Ralf A1 - Czerwensky, Michael A1 - Traub, Heike A1 - Heinrich, Hans-Joachim A1 - Kipphardt, Heinrich T1 - Special new techniques of atomic spectrometric methods for trace analysis of high purity metals PY - 2003 SN - 0032-6895 SN - 1778-3771 VL - 91 IS - Décembre SP - 37 EP - 50, N° Hors Série CY - Paris AN - OPUS4-6188 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike T1 - Analyse von Hochtechnologiematerialien mit ETV und Bogen T2 - Solid-Samping-User-Meeting CY - Kempten, Germany DA - 2004-05-24 PY - 2004 AN - OPUS4-3571 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike T1 - Direkte Feststoffanalyse von Hochtechnologie-Materialien mit ETV ICP OES und DC-Arc-OES T2 - Abteilungsseminar der Abt. I CY - Berlin, Germany DA - 2005-06-20 PY - 2005 AN - OPUS4-11909 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Czerwensky, Michael A1 - Matschat, Ralf A1 - Kipphardt, Heinrich T1 - Determination of trace impurities in pure copper using LA-ICP-MS T2 - 16. Jahreskolloquium der Interessengemeinschaft Atomspektroskopie (IGAS) CY - Berlin, Germany DA - 2006-11-08 PY - 2006 AN - OPUS4-13778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Czerwensky, Michael A1 - Matschat, Ralf A1 - Kipphardt, Heinrich T1 - Determination of trace impurities in pure copper using LA-ICP-MS T2 - 8th European Workshop on Laser Ablation in Elemental Analysis CY - Zurich, Switzerland DA - 2006-07-19 PY - 2006 AN - OPUS4-12575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Czerwensky, Michael A1 - Matschat, Ralf A1 - Kipphardt, Heinrich T1 - Comparison of different calibration strategies for the analysis of pure copper by LA-ICP-MS T2 - 13th International Conference on ultra high-purity base metals, BAM CY - Berlin, Germany DA - 2006-09-11 PY - 2006 AN - OPUS4-13480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Czerwensky, Michael A1 - Matschat, Ralf A1 - Kipphardt, Heinrich T1 - Analyse von reinem Kupfer mit LA-ICP-MS: Möglichkeiten der Kalibrierung mit synthetischen Standards T2 - CANAS '07, Colloquium Analytische Atomspektroskopie CY - Konstanz, Germany DA - 2007-03-18 PY - 2007 AN - OPUS4-14627 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Czerwensky, Michael A1 - Matschat, Ralf A1 - Kipphardt, Heinrich A1 - Panne, Ulrich T1 - Homogenitätsprüfung und Analyse von reinem Kupfer mit Laserablation-ICP-Massenspektrometrie T2 - 4. Hochschul-Kupfersymposium CY - Berlin, Germany DA - 2007-11-06 PY - 2007 AN - OPUS4-14803 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Traub, Heike A1 - Czerwensky, Michael A1 - Matschat, Ralf A1 - Kipphardt, Heinrich A1 - Panne, Ulrich T1 - Homogenitätsprüfung und Analyse von reinem Kupfer mit Laserablation-ICP-Massenspektrometrie KW - Laserablation KW - Kupfer KW - Homogenität KW - ZRM PY - 2007 SN - 0026-0746 VL - 61 IS - 11 SP - 744 EP - 745 PB - Giesel Verlag GmbH CY - Isernhagen AN - OPUS4-16153 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Czerwensky, Michael A1 - Matschat, Ralf A1 - Kipphardt, Heinrich A1 - Panne, Ulrich T1 - Vergleich unterschiedlicher Ansätze zur Kalibrierung bei der Analyse von reinem Kupfer mit LA-ICP-MS T2 - ANAKON 2007 CY - Jena, Germany DA - 2007-03-27 PY - 2007 AN - OPUS4-14642 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Wienold, Julia A1 - Czerwensky, Michael A1 - Kipphardt, Heinrich A1 - Recknagel, Sebastian A1 - Matschat, Ralf A1 - Panne, Ulrich T1 - Laser ablation ICP-MS for the determination of trace impurities in pure copper T2 - IGAS-Jahreskolloquium 2007 CY - Berlin, Germany DA - 2007-11-08 PY - 2007 AN - OPUS4-16304 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Wienold, Julia A1 - Czerwensky, Michael A1 - Kipphardt, Heinrich A1 - Recknagel, Sebastian A1 - Matschat, Ralf A1 - Panne, Ulrich T1 - Laser ablation ICP-MS for the determination of trace impurities in pure copper T2 - EuroAnalysis XIV CY - Antwerp, Belgium DA - 2007-09-09 PY - 2007 AN - OPUS4-15692 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Panne, Ulrich A1 - Koch, J. A1 - Wälle, M. A1 - Matschat, Ralf A1 - Kipphardt, Heinrich A1 - Günther, D. T1 - Einsatz synthetischer Kalibrierproben für die Analyse von Reinkupfer mit fs-LA-ICP-MS T2 - 21. ICP-MS Anwendertreffen und 8. Symposium über Massenspektrometrische Verfahren der Elementspurenanalyse CY - Dresden, Germany DA - 2008-09-17 PY - 2008 AN - OPUS4-17719 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Vogl, Jochen A1 - Kipphardt, Heinrich A1 - Recknagel, Sebastian A1 - Panne, Ulrich A1 - Fischer, I. A1 - Wienold, Julia T1 - Fast determination of the boron isotope ratio in steel and aluminium alloys using LA-ICP-MS T2 - 9th European Workshop on Laser Ablation in Elemental and Isotopic Analysis CY - Prague, Czech Republic DA - 2008-07-07 PY - 2008 AN - OPUS4-18063 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Czerwensky, Michael A1 - Matschat, Ralf A1 - Kipphardt, Heinrich A1 - Panne, Ulrich T1 - Beitrag der LA-ICP-MS zur Charakterisierung von Kupfer-Referenzmaterialien T2 - 21. ICP-MS Anwendertreffen und 8. Symposium über Massenspektrometrische Verfahren der Elementspurenanalyse CY - Dresden, Germany DA - 2008-09-17 PY - 2008 AN - OPUS4-17715 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Panne, Ulrich A1 - Koch, J. A1 - Wälle, M. A1 - Matschat, Ralf A1 - Kipphardt, Heinrich A1 - Günther, D. T1 - Application of synthetic calibration samples for the analysis of pure copper using femtosecond LA-ICP-MS T2 - 9th European Workshop on laser ablation in elemental and isotopic analysis CY - Prague, Czech Republic DA - 2008-07-07 PY - 2008 AN - OPUS4-17541 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Wälle, M. A1 - Koch, J. A1 - Panne, Ulrich A1 - Matschat, Ralf A1 - Kipphardt, Heinrich A1 - Günter, D. T1 - Application of different calibration strategies for the analysis of pure copper using nano- and femtosecond laser ablation ICP-MS T2 - European Winter Conference on Plasma Spectrochemistry CY - Graz, Austria DA - 2009-02-15 PY - 2009 AN - OPUS4-19007 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Wälle, M. A1 - Koch, J. A1 - Panne, Ulrich A1 - Matschat, Ralf A1 - Kipphardt, Heinrich A1 - Günther, D. T1 - Analyse von Reinkupfer mit LA-ICP-MS: Vergleich unterschiedlicher Kalibrierstrategien T2 - ANAKON 2009 CY - Berlin, Germany DA - 2009-03-17 PY - 2009 AN - OPUS4-19009 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Kipphardt, Heinrich A1 - Jakubowski, Norbert T1 - Determination of trace elements in Nb2O5 powder using LA-ICP-MS T2 - 10th European Workshop on Laser Ablation CY - Kiel, Germany DA - 2010-06-29 PY - 2010 AN - OPUS4-21790 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Kipphardt, Heinrich A1 - Jakubowski, Norbert T1 - LA-ICP-MS zur Bestimmung von Elementspuren in Niobpentoxid-Pulver T2 - 9. Symposium Massenspektrometrische Verfahren der Elementspurenanalyse, 22. ICP-MS Anwendertreffen CY - Berlin, Germany DA - 2010-09-06 PY - 2010 AN - OPUS4-21791 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Kipphardt, Heinrich A1 - Jakubowski, Norbert T1 - Bestimmung von Elementspuren in Niobpentoxid-Pulver mit LA-ICP-MS T2 - CANAS 2011 CY - Leipzig, Germany DA - 2011-03-13 PY - 2011 AN - OPUS4-23241 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Tempez, A. T1 - Evaluation of solution doped powder pellets for the analysis of pure copper using PP-TOFMS T2 - 6th International GD Day CY - Paris, France DA - 2012-09-21 PY - 2012 AN - OPUS4-27481 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, Daniela A1 - Giesen, Charlotte A1 - Kneipp, Janina A1 - Jakubowski, Norbert T1 - LA-ICP-MS zur Analyse einzelner Zellen T2 - 23. ICPMS Anwendertreffen und 10. Symposium Massenspektrometrische Verfahren der Elementspurenanalyse CY - Tulln an der Donau, Austria DA - 2012-09-10 PY - 2012 AN - OPUS4-27480 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Tempez, A. A1 - Chapon, P. A1 - Jakubowski, Norbert T1 - Application of solution doped powder pellets for the analysis of pure copper using Plasma Profiling TOFMS T2 - 16. Anwendertreffen "Analytische Glimmentladungsspektrometrie" 2013 CY - Duisburg, Germany DA - 2013-04-24 PY - 2013 AN - OPUS4-28779 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, D. A1 - Büchner, T A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Localisation and quantification of metallic nanoparticles in single cells by laser ablation ICP-MS T2 - NanoBio Europe, 10th International Congress & Exhibition on Nanobiotechnology CY - Münster, Germany DA - 2014-06-02 PY - 2014 AN - OPUS4-30781 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, Daniela A1 - Büchner, Tina A1 - Zeise, Ingrid A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Localisation and quantification of metallic nanoparticles in single cells by LA-ICP-MS T2 - 12th European Workshop on Laser Ablation (EWLA2014) CY - London, England DA - 2014-07-08 PY - 2014 AN - OPUS4-31099 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, Daniela A1 - Büchner, Tina A1 - Zeise, Ingrid A1 - Kneipp, Janina A1 - Jakubowski, Norbert T1 - Studying cellular uptake and processing of nanoparticles by LA-ICP-MS T2 - European Winter Conference on Plasma Spectrochemistry - EWCPS 2015 CY - Münster, Germany DA - 2015-02-22 PY - 2015 AN - OPUS4-32748 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, Daniela A1 - Büchner, T. A1 - Zeise, Ingrid A1 - Kneipp, Janina A1 - Jakubowski, Norbert T1 - Studying cellular uptake and processing of nanoparticles by LA-ICP-MS N2 - In recent years, elemental imaging of biological samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is gaining in importance. Latest improvements regarding spatial resolution (down to 1 µm) and washout time make LA-ICP-MS particularly interesting for single cell analysis. Many current nanomaterials can serve as contrast agents in cellular or tissue imaging, drug delivery vehicles or therapeutics, whereas others can cause toxic effects. In order to evaluate nano-bio interactions, the number of nanoparticles (NPs) inside cells as well as their localisation within cellular substructures is of particular interest. LA-ICP-MS was used to study the NP pathway from uptake, via intracellular processing up to cell division. Fibroblast cells were incubated with different metallic NPs under varying experimental conditions. For LA analysis the cells were fixed with formaldehyde and dried. Our results show that LA-ICP-MS is able to localise NP aggregates within cellular substructures. The NPs accumulate in the perinuclear region in the course of intracellular processing, e.g. multivesicular fusion and endosomal maturation, but do not enter the nucleus [1, 2]. A strong dependence of NP uptake on concentration and incubation time was found. Additionally, the number of NPs internalized by individual cells was determined and variations within the cell population became visible. A new laser ablation system providing a short washout time (50 ms) together with small spot sizes (< 4 µm) and high repetition rates allows high spatial resolution applications. First results of cell imaging will be shown. The findings demonstrate the potential of LA-ICP-MS enabling insight into NP uptake and intracellular distribution dependent on experimental parameters. T2 - 8th Nordic Conference on Plasma Spectrochemistry CY - Loen, Norway DA - 05.06.2016 KW - Imaging KW - LA-ICP-MS KW - Cell KW - Nanoparticles PY - 2016 AN - OPUS4-36500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, Daniela A1 - Büchner, T. A1 - Kneipp, Janina A1 - Jakubowski, Norbert T1 - Studying cellular uptake and processing of nanoparticles by LA-ICP-MS N2 - In recent years, elemental imaging of biological samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is gaining in importance. Recent improvements regarding spatial resolution (down to 1 µm) and washout time make LA-ICP-MS particularly interesting for single cell analysis. Many current nanomaterials can serve as contrast agents in cellular or tissue imaging, drug delivery vehicles or therapeutics, whereas others can cause toxic effects. In order to evaluate nano-bio interactions, the number of nanoparticles (NPs) inside cells as well as their localisation within cellular substructures is of particular interest. LA-ICP-MS was used to study the NP pathway from uptake, via intracellular processing up to cell division. Fibroblast cells were incubated with different metallic NPs under varying experimental conditions. For LA analysis the cells were fixed with formaldehyde and dried. Our results show that LA-ICP-MS is able to localise NP aggregates within cellular substructures. The NPs accumulate in the perinuclear region in the course of intracellular processing, e.g. multivesicular fusion and endosomal maturation, but do not enter the nucleus [1, 2]. A strong dependence of NP uptake on concentration and incubation time was found. Additionally, the number of NPs internalized by individual cells was determined and variations within the cell population became visible. A new laser ablation system providing a short washout time (50 ms) together with small spot sizes (< 4 µm) and high repetition rates allows high spatial resolution applications. First results of cell imaging will be shown. The findings demonstrate the potential of LA-ICP-MS providing insight into NP uptake and intracellular distribution dependent on experimental parameters. T2 - 13th European Workshop on Laser Ablation CY - Ljubljana, Slovenia DA - 12.07.2016 KW - LA-ICP-MS KW - Nanoparticle KW - Bio-imaging KW - Cell PY - 2016 AN - OPUS4-36891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Esteban-Fernandez, Diego A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Hutchinson, R. A1 - Wilkins, J. A1 - Summerfield, L. A1 - McLachlin, K. T1 - High resolution laser ablation NWRimage system for single cell imaging N2 - This work demonstrates the sub-cellular resolution bio-imaging capabilities of the NWRimage system with Dual Concentric Injector (DCI) technology in a practical application. 3T3 fibroblast cells incubated with gold nanoparticles were imaged, demonstrating the sub-cellular imaging capabilities. A laser ablation system specifically designed for rapid, high resolution imaging was employed. The system´s optical layout is optimized to minimize crater diameters. Sensitivity and speed were achieved using the DCI technology for ultra-fast washout times. T2 - 13th European Workshop on Laser Ablation CY - Ljubljana, Slovenia DA - 12.07.2016 KW - Laser ablation KW - Bio-imaging KW - Nanoparticle PY - 2016 AN - OPUS4-36996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, L. A1 - Traub, Heike A1 - Jakubowski, Norbert T1 - Novel applications of lanthanoides as analytical or diagnostic tools in the life sciences by ICP-MS-based techniques N2 - Inductively coupled plasma mass spectrometry (ICP-MS) is a well-established analytical method for multi-elemental analysis in particular for elements at trace and ultra-trace levels. It has found acceptance in various application areas during the last decade. ICP-MS is also more and more applied for detection in the life sciences. For these applications, ICP-MS excels by a high sensitivity, which is independent of the molecular structure of the analyte, a wide linear dynamic range and by excellent multi-element capabilities. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional bioanalytical techniques, and relative limits of detection (LODs) in the low pg g−1 range and absolute LODs down to the attomol range. In this chapter, we focus on new applications where the multi-element capability of ICP-MS is used for detection of lanthanoides or rare earth elements, which are applied as elemental stains or tags of biomolecules and in particular of antibodies. KW - ICP-MS KW - Life sciences KW - Mass cytometry KW - Laser ablation (LA)-ICP-MS KW - Bioimaging PY - 2016 DO - https://doi.org/10.1515/psr-2016-0064 SN - 2365-659X SN - 2365-6581 VL - 1 IS - 11 SP - 1 EP - 19 AN - OPUS4-40234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Müller, L. A1 - Traub, Heike A1 - Jakubowski, Norbert ED - Prof. Dr. Golloch, Alfred T1 - Novel applications of lanthanoides as analytical or diagnostic tools in the life sciences by ICP-MS-based techniques N2 - Inductively coupled plasma mass spectrometry (ICP-MS) is a well-established analytical method for multi-elemental analysis in particular for elements at trace and ultra-trace levels. It has found acceptance in various application areas during the last decade. ICP-MS is also more and more applied for detection in the life sciences. For these applications, ICP-MS excels by a high sensitivity, which is independent of the molecular structure of the analyte, a wide linear dynamic range and by excellent multi-element capabilities. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional bioanalytical techniques, and relative limits of detection (LODs) in the low pg g−1 range and absolute LODs down to the attomol range. In this chapter, we focus on new applications where the multi-element capability of ICP-MS is used for detection of lanthanoides or rare earth elements, which are applied as elemental stains or tags of biomolecules and in particular of antibodies. KW - ICP-MS KW - Life sciences KW - Mass cytometry KW - Laser ablation (LA)-ICP-MS KW - Bioimaging PY - 2017 SN - 978-3-11-036523-8 SP - Chapter 11, 301 EP - 320 PB - De Gruyter AN - OPUS4-40244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Esteban-Fernandez, Diego A1 - Traub, Heike A1 - Hutchinson, R. A1 - Jakubowski, Norbert A1 - Wilkins, J. A1 - Summerfield, L. A1 - McLachlin, K. T1 - High resolution laser ablation NWRimage system for single cell imaging N2 - The traceability and availability of nanoparticles enables their use to enhance a variety of nano-biological and nano-medicinal applications. The particular size and shape of nanoparticles determine the uptake rate and pathway into the cell, and therefore impact specific cell components and processes. Selecting specific particle types allows researchers to target the process or structure of interest, with minimal additional impact. This can be used for drug or DNA delivery, and is being explored for use in oncology. Understanding the different uptake mechanisms and impacted processes requires sub-cellular Imaging resolution to determine, for example, whether or not the nanoparticles are reaching the nucleus. Sub-cellular imaging has traditionally been challenging to achieve with laser ablation ICP-MS due to a lack of sensitivity at small spots. Bioimaging using LA-ICP-MS is a well-established technique, but usually applied on the tissue scale, which depends on larger spot areas where sensitivity is less problematic. The improved sensitivity and washout from the NWRimage has allowed faster imaging of smaller spots. The NWRimage also provides the possibility of true sub-micron spot sizes. This work compares the capabilities of standard laser Ablation (NWR213 system) with results from the NWRimage platform, which has been optimized for imaging applications. T2 - European Winter Conference on Plasma Spectrochemistry CY - St. Anton, Austria DA - 19.02.2017 KW - Laser ablation KW - Imaging KW - Nanoparticle PY - 2017 AN - OPUS4-39281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, D. A1 - Büchner, T. A1 - Zeise, Ingrid A1 - Kneipp, Janina A1 - Jakubowski, Norbert T1 - Imaging of nanoparticles in cells by LA-ICP-MS N2 - The interaction of nanoparticles (NPs) with cells has become a major field of interest, ranging from therapeutic applications to nanotoxicology. The cellular uptake depends on the primary characteristics of the NPs (e.g. size, shape, surface modification) and on the cells interacting with the particles. Thereby the quantification of NPs in cells is of particular importance to obtain information under different experimental conditions. Presently, the number of NPs internalized is often determined by inductively coupled plasma (ICP) optical emission spectrometry (OES) or ICP mass spectrometry (MS) after acid digestion of a cell suspension or a cell pellet. The result is an average value and no information about the distribution among cells or within a cell is available. Therefore we developed a method based on laser ablation (LA) in combination with ICP-MS to localise and quantify metallic NPs in single cells. LA-ICP-MS is a powerful analytical method which offers excellent sensitivity at high spatial resolution and multielement capability without time-consuming sample preparation steps. Recently, LA-ICP-MS was established for elemental mapping of biological samples like tissues. In our experiments, fibroblast cells were incubated with gold or silver containing nanoparticles and grown on sterile coverslips under standard conditions. For LA analysis the cells were fixed with formaldehyde and dried. Subcellular resolution is achived by careful optimisation of laser energy, ablation frequency and scan speed. The elemental distribution was determined by continuous ablation line by line of cells incubated with NPs. Our results show that LA-ICP-MS is able to detect NP aggregates within cellular substructures. After 24 h of incubation the NPs were found in the cytosol, preferencially in the perinuclear region, but do not enter the nucleus. Additionally, a quantification strategy at single-cell level was developed. For this purpose nitrocellulose membrane was spiked with Ag or Au nanoparticle suspension at different concentration levels and analysed by LA-ICP-MS. Based on this calibration the number of NPs taken up by individual cells was determined and variations within the cell population become visible. The cells show a strong dependence of NP uptake on concentration and incubation time. Our results demonstrate the potential of LA-ICP-MS providing insight into NP uptake and intracellular distribution dependent on experimental parameters. T2 - Erfahrungsaustausch LA-ICP-MS mit Bayer AG CY - Berlin, Germany DA - 11.09.2017 KW - LA-ICP-MS KW - Bioimaging KW - Nanoparticles KW - Cell PY - 2017 AN - OPUS4-42575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Büchner, T. A1 - Drescher, D. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Studying cellular uptake of metal-containing nanoparticles by LA-ICP-MS N2 - Nanoparticles (NPs) have potential applications in medical diagnostics, imaging, drug delivery and other kinds of therapy. Furthermore, studies concerning nanoparticle uptake by cells are important for risk assessment. Size, shape and surface modification of the NPs determine the uptake rate and pathway into the cells, and therefore impact specific cell components and processes. Understanding the different uptake mechanisms and involved processes require sub-cellular resolution to determine, for example, whether the nanoparticles are reaching the nucleus. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an established quantitative multi-elemental analysis and mapping technique. However, sub-cellular imaging has traditionally been challenging to achieve due to a lack of sensitivity at small laser spots. But now novel laser ablation systems with improved sensitivity and washout time allow imaging at high lateral resolution with spot sizes down to 1 µm. Here LA-ICP-MS was applied for the imaging of individual fibroblast cells to study the uptake and intracellular processing of metal-containing NPs. To indicate cell morphology the local distribution of naturally occurring elements in cells like P and Zn was measured, too. Our results show that LA-ICP-MS can be used to localise nanoparticle aggregates within cellular compartments. The studied NPs accumulate in the perinuclear region in the course of intracellular processing, but do not enter the cell nucleus. The uptake efficiency depends strongly on the physico-chemical properties of the nanostructures as well as on the incubation conditions like concentration and incubation time. The potential of LA-ICP-MS for analysis at single cell level will be demonstrated. T2 - Euroanalysis 2017 CY - Stockholm, Sweden DA - 28.08.2017 KW - Laser ablation KW - ICP-MS KW - Nanoparticle KW - Cell PY - 2017 AN - OPUS4-41883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, D. A1 - Büchner, T. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Imaging of nanoparticles in cells by LA-ICP-MS N2 - Studying the interaction of nanoparticles (NPs) with cells has become a growing field of interest. Research topics are ranging from nanotoxicology to medical applications e.g. as theranostic agents. In order to evaluate nano-bio interactions, the number of NPs inside cells as well as their localisation within cellular substructures is of particular interest. In recent years, elemental imaging of biological samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is gaining more and more importance. Latest instrumental developments regarding spatial resolution (down to 1 µm) and detection efficiency make LA ICP-MS particularly interesting for single cell analysis. Here, we have applied LA-ICP-MS for sub-cellular scale imaging of individual cells to study the NP pathway from uptake, via intracellular processing up to cell division. Furthermore, the local distribution of naturally occurring elements in cells like P was measured to indicate the cell morphology. Murine fibroblast cells were incubated with different metal-containing NPs under varying experimental conditions. For LA analysis, the cells were fixed and dried. Sub-cellular resolution was achieved by careful optimisation of the laser ablation parameters. By rastering with the laser beam across the sample, a two-dimensional image of the elemental distribution can be received. Our results show that LA-ICP-MS is able to localise NP aggregates within cellular substructures. The studied NPs accumulate in the perinuclear region in the course of intracellular processing, e.g. multivesicular fusion and endosomal maturation, but do not enter the nucleus. The uptake depends on the physico-chemical properties of the nanostructures and on the incubation conditions like concentration and incubation time. Additionally, the number of NPs internalized by individual cells was determined and variations within a cell population became visible. The findings demonstrate the potential of LA-ICP-MS providing insight into NP uptake and intracellular distribution dependent on experimental parameters. T2 - Euroanalysis 2017 CY - Stockholm, Sweden DA - 28.08.2017 KW - Laser ablation KW - Nanoparticle KW - ICP-MS KW - Imaging KW - Cell PY - 2017 AN - OPUS4-41884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jakubowski, Norbert A1 - Müller, L. A1 - Traub, Heike A1 - Esteban-Fernández, D. A1 - Panne, Ulrich A1 - Herrmann, Antje A1 - Schellenberger, E. A1 - Theuring, F. A1 - Kneipp, Janina T1 - Imaging by laser ablation ICP-MS N2 - ICP-MS is a well-established analytical method which excels by high accuracy, high dynamic range and extremely low limits of detection for most metals. Furthermore ICP-MS offers a very high multi-element coverage so that many elements of the periodic table can be detected simultaneously. In this series of lectures, we want to focus on the historical developments, fundamentals, instrumentation and novel applications of ICP-MS in the life and material sciences. T2 - Ringvorlesung Analytik CY - Humboldt-Universität zu Berlin DA - 23.06.2017 KW - Laser ablation ICP-MS KW - Bio-Imaging PY - 2017 AN - OPUS4-40757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, D. A1 - Büchner, T. A1 - Merk, V. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Studying nanoparticle-cell interaction by LA ICP-MS N2 - The interaction of nanoparticles (NPs) with cells has become a major field of interest, ranging from medical applications to nanotoxicology. Size, shape and surface modification of the NPs determine the uptake rate and pathway into the cells, and therefore impact specific cell components and processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an established quantitative multi-elemental analysis and mapping technique. In recent years, it was shown that LA-ICP-MS can provide quantitative as well as distribution information of NPs in cell samples. Here LA-ICP-MS was applied for the imaging of individual cells to study the uptake and intracellular processing of metal-containing nanostructures. Additionally, the local distribution of naturally occurring elements in cells like P was measured to indicate cell morphology. The cells were incubated with different types of NPs under varying experimental conditions. For LA analysis, the cells were fixed and dried. Our findings show, that LA-ICP-MS is suitable for the localisation of nanoparticle aggregates within cellular compartments. The studied NPs accumulate in the perinuclear region in the course of intracellular processing, but do not enter the cell nucleus. The uptake efficiency depends strongly on the physicochemical properties of the nanostructures as well as on the incubation conditions like concentration and incubation time. The results demonstrate the potential of LA-ICP-MS providing insight into NP uptake, intracellular distribution and cell-to-cell variation dependent on experimental parameters. T2 - Workshop on Laser Bioimaging Mass Spectrometry CY - Münster, Germany DA - 24.05.2018 KW - Imaging KW - Laser ablation KW - ICP-MS KW - Nanoparticle KW - Cell PY - 2018 AN - OPUS4-45071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cruz-Alonso, M. A1 - Fernandez, B. A1 - Alvarez, L. A1 - Gonzalez-Iglesias, H. A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Pereiro, R. T1 - Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags N2 - An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma – mass spectrometry (ICP-MS). Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. KW - Nanocluster KW - Immunohistochemistry KW - Laser ablation KW - ICP-MS KW - Fluorescence KW - Bioimaging PY - 2018 DO - https://doi.org/10.1007/s00604-017-2597-1 SN - 1436-5073 SN - 0026-3672 VL - 185 IS - 1 SP - 64 EP - 72 PB - Springer CY - Vienna AN - OPUS4-44637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, D. A1 - Büchner, T. A1 - Pisonero, J. A1 - Bouzas-Ramos, D. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - LA-ICP-MS to study nanoparticle-cell interaction N2 - Nanoparticles (NPs) have found a wide range of applications in research and industry. Thereby the interaction of NPs with biological systems like cells has become a major field of interest, ranging from medical applications to nanotoxicology. Size, shape and surface modification of the nanomaterials determine the uptake rate and pathway into the cells, and therefore impact specific cell components and processes. In recent years, elemental imaging of biological samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is gaining more and more importance. Improvements concerning both spatial resolution (down to 1 µm) and signal-to-background ratio due to low-dispersion LA chambers make LA-ICP-MS particularly interesting for single cell analysis. Here LA-ICP-MS was applied for the imaging of individual cells to study the uptake and intracellular processing of metal-containing nanostructures. The cells were incubated with different NPs under varying experimental conditions and afterwards fixed with para-formaldehyde and dried for LA analysis. High-spatial resolution LA-ICP-MS was achieved by careful optimisation of the laser ablation parameters. Our findings show, that LA-ICP-MS is applicable to localize NP aggregates within cellular compartments. The uptake efficiency depends strongly on the physicochemical properties of the nanostructures as well as on the incubation conditions like concentration and incubation time. The results demonstrate the potential of LA-ICP-MS providing insight into nanoparticle-cell interaction dependent on experimental parameters. T2 - 14th European Workshop on Laser Ablation (EWLA) CY - Pau, France DA - 26.06.2018 KW - Laser ablation KW - ICP-MS KW - Imaging KW - Nanoparticle KW - Cell PY - 2018 AN - OPUS4-45570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Büchner, T. A1 - Drescher, D. A1 - Merk, V. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Studying nanoparticle-cell interaction by ICP-MS based techniques N2 - Nanoparticles (NPs) have found a wide range of applications in research and industry. Thereby the interaction of NPs with biological systems like cells has become a major field of interest, ranging from medical applications to nanotoxicology. Size, shape and surface modification of the nanomaterials determine the uptake rate and pathway into the cells, and therefore impact specific cell components and processes. Inductively coupled plasma mass spectrometry (ICP-MS) is a well-established analytical method offering high sensitivity and multi-element capability. By coupling a laser ablation (LA) system to an ICP-MS the analysis of different kinds of solid samples is possible. In recent years, it was shown that LA-ICP-MS can provide quantitative as well as distribution information of metal containing nanoparticles (NPs) in cell samples. Here LA-ICP-MS was applied for the imaging of individual fibroblast cells to study the uptake and intracellular processing of NPs. Our results show that LA-ICP-MS can be used to localize nanoparticle aggregates within cellular compartments. The studied NPs accumulate in the perinuclear region in the course of intracellular processing, but do not enter the cell nucleus. The uptake efficiency depends strongly on the physico-chemical properties of the nanostructures as well as on the incubation conditions like concentration and incubation time. ICP-MS was used to determine the composition of the nanomaterials as well as the number of NPs in cells after acid digestion of the samples. T2 - Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - ICP-MS KW - Laser ablation KW - Nanoparticle KW - Cell PY - 2018 AN - OPUS4-45073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Büchner, T. A1 - Drescher, D. A1 - Merk, V. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Studying nanoparticle-cell interaction by ICP-MS based techniques N2 - Nanoparticles (NPs) have found a wide range of applications in research and industry. Thereby the interaction of NPs with biological systems like cells has become a major field of interest, ranging from medical applications to nanotoxicology. Size, shape and surface modification of the nanomaterials determine the uptake rate and pathway into the cells, and therefore impact specific cell components and processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an established quantitative multi-elemental analysis and mapping technique. In recent years, it was shown that LA-ICP-MS can provide quantitative as well as distribution information of metal containing nanoparticles (NPs) in cell samples. Here LA-ICP-MS was applied for the imaging of individual fibroblast cells to study the uptake and intracellular processing of NPs. Our results show that LA-ICP-MS can be used to localize nanoparticle aggregates within cellular compartments. The studied NPs accumulate in the perinuclear region in the course of intracellular processing, but do not enter the cell nucleus. The uptake efficiency depends strongly on the physico-chemical properties of the nanostructures as well as on the incubation conditions like concentration and incubation time. ICP-MS was used to determine the composition of the nanomaterials as well as the number of NPs in cells after acid digestion of the samples. T2 - 13. Symposium „Massenspektrometrische Verfahren der Element­spurenanalyse“ & 26. ICP-MS-Anwendertreffen CY - Berlin, Germany DA - 03.09.2018 KW - ICP-MS KW - Nanoparticle KW - Cell KW - Laser ablation PY - 2018 AN - OPUS4-45860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike T1 - LA-ICP-MS for the analysis of nanoparticles in cells N2 - Many current nanomaterials can serve as contrast agents in cellular or tissue imaging, drug delivery vehicles or therapeutics, whereas others can cause toxic effects. In order to evaluate nano-bio interactions, the number of nanoparticles (NPs) inside cells as well as their localisation within cellular substructures is of particular interest. The cellular uptake depends on the primary characteristics of the NPs (e.g. size, shape, surface coating) and on the cell type. Laser ablation inductively coupled plasma mass spectrometry (LA‑ICP‑MS) is more and more used to study the NP pathway from uptake, via intracellular processing up to cell division. High-spatial resolution laser ablation at single cell level is achieved using novel low-dispersion LA chambers and by careful optimisation of laser energy, ablation frequency and scan speed at small laser spot sizes down to 1 µm. Different examples from BAM, Division 1.1 and cooperation partners using LA-ICP-MS to localize and quantify metal-containing nanoparticles are shown. The results demonstrate the potential of LA-ICP-MS providing insight into NP uptake, intracellular distribution and cell-to-cell variation. T2 - 13. Symposium "Massensprektrometrische Verfahren der Elementspurenanalyse" + 26. ICP-MS Anwendertreffen CY - Berlin, Germany DA - 03.09.2018 KW - Laser ablation KW - Cells KW - Nanoparticles KW - Imaging PY - 2018 AN - OPUS4-46440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Iznaguen, Hassan A1 - Traub, Heike A1 - Feldmann, Ines A1 - Köppen, Robert A1 - Witt, Angelika A1 - Jung, Christian A1 - Becker, Roland A1 - Oleszak, Katrin A1 - Bücker, Michael A1 - Urban, Klaus A1 - Reger, Christian A1 - Ostermann, Markus T1 - Bewitterungsszenarien im Vergleich – Veränderungen in der Oberflächenmorphologie von Polypropylen (PP) und Polystyrol (PS) unter dem Aspekt des Austrags von polybromierten Flammschutzmitteln N2 - Gegenstand der vorzustellenden Arbeiten ist die Prüfung der Umwelt-beständigkeit und -verträglichkeit von Materialien und Produkten hinsichtlich der Emission von potenziellen Schadstoffen in die Umwelt. Hierzu werden chemisch-physikalische Einflüsse (Bewitterung) und mikrobielle Beanspruchungen an Modellmaterialien evaluiert. So werden die Freisetzungsraten von Schadstoffen in Abhängigkeit der Beanspruchung beschrieben. Als Modellmaterialien kommen die Polymere Polystyrol (PS) und Polypropylen (PP) zum Einsatz. Synergistische Effekte der Bewitterungsparameter und der mikrobiologischen Beanspruchung sollen dabei ebenso betrachtet werden, wie die gezielte Alterung. Auch findet eine Beschreibung des Verhaltens der ausgetragenen Schadstoffe in den Umweltkompartimenten Boden oder Wasser statt. Hier sind mit Hilfe der zu entwickelnden Screening- und non-Target-Analyseverfahren die Transformation und der Metabolismus durch Mikroorganismen zu beschreiben. Aus den Ergebnissen sollen Korrelationen zwischen den künstlichen Alterungsverfahren und realen Szenarien abgeleitet werden. T2 - 47. Jahrestagung der GUS CY - Blankenloch-Stutensee, Germany DA - 21.03.2018 KW - Schadstoffaustrag KW - Umweltsimulation KW - Bewitterung PY - 2018 SN - 978-981-18507-2-7 VL - 47 SP - 115 EP - 128 AN - OPUS4-49802 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Löhr, Konrad A1 - Traub, Heike A1 - Wanka, Antje Jutta A1 - Panne, Ulrich A1 - Jakubowski, Norbert T1 - Quantification of metals in single cells by LA-ICP-MS: Comparison of single spot analysis and imaging N2 - LA-ICP-MS is increasingly used for single cell analysis in two different detection modes using either the imaging mode with subcellular resolution or alternatively single spot analysis of cells with a larger laser spot size. This study compares the analytical figures of merit of both detection modes (signal to noise, precision, accuracy, throughput), as well as ease of operation and data evaluation. Adherent 3T3 fibroblast cells were stained with two metal dyes (mDOTA-Ho, Ir-DNA-intercalator) and several dozen cells were measured using both modes. We found a ten times higher throughput for single spot analysis, which has as well a straightforward data analysis, shortening the total analysis time further. The signal to noise ratio for single spot analysis was found to be slightly better compared to the signal to noise of pixels in imaging. The mean metal intensity per single cell differed by only 10% between both modes and obtained distributions were found to show no statistically significant differences. Using matrix matched calibration based on standards spotted onto nitrocellulose membrane, we achieved detection limits (10s) of 12 fg for Ir and 30 fg for Ho and quantified 57 +/-35 fg Ir and 1192 +/- 707 fg Ho per single cell. Compared to a conventional ICP-MS measurement of a digest of about 60000 cells, 54% of Ir content and 358% Ho content was found using quantitative LA-ICP-MS. The difference might be a consequence of the two metal dyes binding to different structures of the cell and therefore might behave differently in sample preparation for conventional and LA-ICP-MS. KW - Cells KW - Laser ablation KW - ICP-MS KW - Metals KW - Quantification PY - 2018 DO - https://doi.org/10.1039/c8ja00191j SN - 0267-9477 VL - 33 IS - 9 SP - 1579 EP - 1587 PB - RSC Royal Society of Chemistry CY - London AN - OPUS4-46441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -