TY - JOUR A1 - Wienold, Julia A1 - Traub, Heike A1 - Lange, Britta A1 - Giray, Thorsten A1 - Recknagel, Sebastian A1 - Kipphardt, Heinrich A1 - Matschat, Ralf A1 - Panne, Ulrich T1 - Elemental analysis of copper and magnesium alloy samples using IR-laser ablation in comparison with spark and glow discharge methods JF - Journal of analytical atomic spectrometry N2 - Three methods for direct solid sampling of bulk material namely IR laser ablation, glow discharge and spark OES, were compared with respect to analytical figures of merit obtained for elemental analysis with atomic spectrometry. Matrices investigated were copper, pressed doped copper powder, and magnesium alloys. For the vast majority of analytes, statistical equivalence regarding precision (usually ≤ 5%) and the performance of the calibrations between the compared methods was demonstrated. KW - LA-ICP-MS KW - GD-MS KW - Spark-OES KW - LA-ICP-OES KW - Copper KW - Magnesium PY - 2009 DO - https://doi.org/10.1039/b903251g SN - 0267-9477 SN - 1364-5544 VL - 24 SP - 1570 EP - 1574 PB - Royal Society of Chemistry CY - London AN - OPUS4-20257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Phukphatthanachai, P. A1 - Panne, Ulrich A1 - Traub, Heike A1 - Pfeifer, Jens A1 - Vogl, Jochen T1 - Quantification of sulphur in copper and copper alloys by GDMS and LA-ICP-MS, demonstrating metrological traceability to the international system of units JF - Journal of Analytical Atomic Spectrometry N2 - The quantification of the sulphur mass fraction in pure copper and copper alloys by GDMS and LA-ICP-MS revealed a lack of traceability mainly due to a lack of suitable certified reference materials for calibrating the instruments. Within this study GDMS and LA-ICP-MS were applied as routine analytical tools to quantify sulphur in copper samples by applying reference materials as calibrators, which were characterized for their sulphur mass fraction by IDMS beforehand. Different external calibration strategies were applied including a matrix cross type calibration. Both techniques with all calibration strategies were validated by using certified reference materials (others than those used for calibration) and good agreement with the reference values was achieved except for the matrix cross type calibration, for which the agreement was slightly worse. All measurement results were accompanied by an uncertainty statement. For GDMS, the relative expanded (k = 2) measurement uncertainty ranged from 3% to 7%, while for LA-ICP-MS it ranged from 11% to 33% when applying matrix-matched calibration in the sulphur mass fraction range between 25 mg kg-1 and 1300 mg kg-1. For cross-type calibration the relative expanded (k = 2) measurement uncertainty need to be increased to at least 12% for GDMS and to at least 54% for LA-ICP-MS to yield metrological compatibility with the reference values. The so obtained measurement results are traceable to the international system of units (SI) via IDMS reference values, which is clearly illustrated by the unbroken chain of calibrations in the metrological traceability scheme. KW - Sulfur KW - Copper KW - GDMS KW - LA-ICP-MS KW - Uncertainty KW - Traceability KW - SI PY - 2021 DO - https://doi.org/10.1039/d1ja00137j SN - 0267-9477 VL - 36 IS - 11 SP - 2404 EP - 2414 PB - Royal Society of Chemistry AN - OPUS4-53412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Traub, Heike A1 - Wälle, M. A1 - Koch, J. A1 - Panne, Ulrich A1 - Matschat, Ralf A1 - Kipphardt, Heinrich A1 - Günther, D. T1 - Evaluation of different calibration strategies for the analysis of pure copper and zinc samples using femtosecond laser ablation ICP-MS JF - Analytical and bioanalytical chemistry N2 - Solution-doped metal powder pellets as well as aspirated liquids were used as calibration samples to analyze pure copper and zinc certified reference materials (CRMs) by femtosecond laser ablation ICP-MS. It was demonstrated that calibration by copper pellets resulted in relative deviations up to 20%, whereas fs-LA-ICP-MS among copper-based CRMs led to inaccuracies in the same range unless nominal mass fractions were chosen to be <3 mg/kg. Calibration by zinc pellets generally provided better accuracy. Depending on the analyte considered, deviations below 10% were obtained even for mass fractions close to the limit of quantification. Our data, therefore, indicate solution-doped metal powder pellets to be suitable as calibration samples for fs-LA-ICP-MS of metals. Furthermore, the utilization of liquid standards for calibration was found to result in stronger deviations of up to 50% for both copper and zinc samples which, in addition, turned out to be dependent on the plasma conditions. KW - Laser ablation KW - ICP-MS KW - Calibration KW - Copper KW - Zinc KW - Metal PY - 2009 DO - https://doi.org/10.1007/s00216-009-3061-9 SN - 1618-2642 SN - 1618-2650 VL - 395 IS - 5 SP - 1471 EP - 1480 PB - Springer CY - Berlin AN - OPUS4-20402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -