TY - CONF A1 - Trappe, Volker A1 - Hickmann, Stefan A1 - Müller, Alexander T1 - Infinite life of CFRP evaluated non-destructively with X-ray-refraction topography in-situ mechanical loading N2 - Carbon Fibre Reinforced Plastics (CFRP) are more and more used in modern civil aircrafts. These days the whole fuselage is made of this material (B787; A350). Due to strict certification standards the normal in-service loading gives a low stress level compared to the static and even the fatigue strength of the material. Hence CFRP are assumed to have an infinite life. To evaluate this assumption, fatigue tests on CFRP-specimens were performed up to 108 load cycles and the first inter-fibre failure was evaluated non-destructively by accompanying X-ray-refraction topography. A tensile testing machine was integrated in a small angle X-ray scattering (SAXS) setup. X-ray refraction topography was performed while the CFRP-samples were tensile loaded. This non-destructive technique enables the detection of micro-cracking and inter-fibre failure especially for CFRP. For Glass Fibre Reinforced Plastic (GFRP) X-ray refraction and in-situ loading has already been successfully used. The increase of inner surfaces due to inter fibre failure was measured as a function of the stress state. Fatigue tests were performed at and below the limit of inter-fibre failure strength. State of the art is to assume the failure of the samples under cyclic loading as the fatigue life. Accompanying non-destructive X-ray refraction measurements reflects the damage state and enables to trace its evolution even if the total failure of the specimens does not occur. This investigation technique is of high interest to give the engineer a design value of infinite life which is practically often reached due to knock down factors of certification standards. Finally the infinite life was found for cyclic fatigue loaded CFRP-samples even under high inter fibre transverse and shear loading investigated up to 108 load cycles. T2 - 19th World Conference on Non-Destructive Testing CY - Munich, Germany DA - 13.06.2016 KW - CFRP KW - NDT KW - Fatigue KW - Damage evolution PY - 2016 AN - OPUS4-37567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Günzel, Stefan A1 - Metzkes, Karoline T1 - Degradation mechanism of short-fibre reinforced polyamide due to unaxial fatigue loading evaluated by non-destructive testing and fractography N2 - The damage process of short glass fibre (30% weight) reinforced polyamide caused by mechanical loading was investigated from the beginning on micro cracking level to the incipient crack of mm-dimension. Based on high resolution computer tomography and the X-ray-refraction technique the inner surface due to micro-cracking at the short fibre ends and the fibre matrix debonding of the skin surface of the filament was determined quantitatively. With the knowledge of the fatigue crack propagation rate and fracture toughness of the material from former research projects, it was derived that the total inner surface due to micro cracks measured by X-ray refraction is much higher than the specimen could have withstand the load, supposed the surface is in a localized crack. Hence, the damage process could be described from micro to macro level. Accompanying fractographic investigations endorse the modelling based on the NDT-techniques. T2 - International Conference of Fatigue of Composites ICFC 6 CY - Paris, France DA - 25.03.2015 KW - Damage evolution KW - Fracture mechanics KW - Crack propagation KW - PA-GF30 KW - X-ray-refraction KW - Fractography PY - 2015 AN - OPUS4-38778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Günzel, Stephan A1 - Metzkes, Karoline ED - Renard, Jacques T1 - Degradation mechanism of short-fibre reinforced PA due to uniaxial fatigue loading evaluated by NDT and fractography T2 - 6th International Conference on Fatigue of Composites - ICFC 6 N2 - The damage process of short glass fibre (30% weight) reinforced polyamide caused by mechanical loading was investigated from the beginning on micro cracking level to the incipient crack of mm-dimension. Based on high resolution computer tomography and the X-ray-refraction technique the inner surface due to micro-cracking at the short fibre ends and the fibre matrix debonding of the skin surface of the filament was determined quantitatively. With the knowledge of the fatigue crack propagation rate and fracture toughness of the material from former research projects, it was derived that the total inner surface due to micro cracks measured by X-ray refraction is much higher than the specimen could have withstand the load, supposed the surface is in a localized crack. Hence, the damage process could be described from micro to macro level. Accompanying fractographic investigations endorse the modelling based on the NDT-techniques. T2 - 6th International Conference on Fatigue of Composites - ICFC 6 CY - Paris, France DA - 25.03.2015 KW - Damage evolution KW - Fracture mechanics KW - Crack propagation KW - Short-Fibre-Reinforced Polymadide KW - X-ray-refraction KW - Fractography PY - 2015 SP - 1 EP - 9 PB - ASTech CY - Paris AN - OPUS4-38779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Müller, Alexander A1 - Hickmann, Stefan T1 - Infinite life of CFRP evaluated non-destructively with X-ray-refraction topography in-situ mechanical loading T2 - WCNDT-Proceedings 2016 N2 - Carbon Fibre Reinforced Plastics (CFRP) are more and more used in modern civil aircrafts. These days the whole fuselage is made of this material (B787; A350). Due to strict certification standards the normal in-service loading gives a low stress level compared to the static and even the fatigue strength of the material. Hence CFRP are assumed to have an infinite life. To evaluate this assumption, fatigue tests on CFRP-specimens were performed up to 108 load cycles and the first inter-fibre failure was evaluated non-destructively by accompanying Xray-refraction topography. A tensile testing machine was integrated in a small angle X-ray scattering (SAXS) setup. X-ray refraction topography was performed while the CFRP samples were tensile loaded. This non-destructive technique enables the detection of micro-cracking and inter-fibre failure especially for CFRP. For Glass Fibre Reinforced Plastic (GFRP) X-ray refraction and in-situ loading has already been successfully used. The increase of inner surfaces due to inter fibre failure was measured as a function of the stress state. Fatigue tests were performed at and below the limit of inter-fibre failure strength. State of the art is to assume the failure of the samples under cyclic loading as the fatigue life. Accompanying non-destructive X-ray refraction measurements reflects the damage state and enables to trace its evolution even if the total failure of the specimens does not occur. This investigation technique is of high interest to give the engineer a design value of infinite life which is practically often reached due to knock down factors of certification standards. Finally the infinite life was found for cyclic fatigue loaded CFRP-samples even under high inter fibre transverse and shear loading investigated up to 108 load cycles. T2 - 19th World Conference on Non-Destructive Testing CY - Munich, Germany DA - 13.06.2016 KW - CFRP KW - NDT KW - Fatigue KW - Damage evolution PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-375015 UR - https://www.ndt.net/?id=19360 SN - 978-3-940283-78-8 VL - 2016 SP - 1 EP - 9 PB - DGZFP CY - Berlin AN - OPUS4-37501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Müller, Alexander A1 - Trappe, Volker A1 - Hickmann, Stefan A1 - Ortwein, H.-P ED - Christ, Hans-Jürgen T1 - Investigation of the infinite life of fibre-reinforced plastics using X-ray refraction topography for the in-situ, nondestructive evaluation of micro-structural degradation processes during cyclic fatigue loading T2 - Fatigue of Materials at Very High Numbers of Loading Cycles N2 - The described investigation of carbon-fibre-reinforced plastics (CFRP) documents that damage evolution can be observed by means of X-ray refractography. Comparative investigations with synchrotron technique on CFRP and grey-scale analysis on glass fibre-reinforced-plastics (GFRP) confirm these results. Moreover it was found that the fracture mechanical properties of the matrix system influence damage nucleation and propagation in the laminate during static and fatigue loads. Single-step fatigue tests were carried out on Laminates with RIM135 and LY556 matrix systems made from non-crimped fabric (NCF) or twill weave in different fibre orientations. The damage to the LY556 laminates was characterized by laminate cracks growing rapidly over the whole specimen width, whereas the damage on the RIM135 laminates was characterized by an earlier onset of micro-cracking followed by laminate cracks. The specimens were fatigued up to 108 (very high cycle fatigue (VHCF) regime) load cycles. S-N-curves of damage initiation were drawn and boundaries were identified for endurance within the VHCF regime. A phenomenology based model focusing on matrix stress was applied to reproduce the first inter-fibre failure (IFF) under static and fatigue loads. KW - Carbon fibre-reinforced-plastics KW - Fatigue KW - Damage evolution KW - X-ray refractography KW - Very high cycle fatigue PY - 2018 SN - 978-3-658-24531-3 DO - https://doi.org/10.1007/978-3-658-24531-3 VL - 2018 SP - 417 EP - 439 PB - Springer Spektrum CY - Wiesbaden ET - 1. Auflage AN - OPUS4-50096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -