TY - JOUR A1 - Martin-Sanchez, Pedro Maria A1 - Gorbushina, Anna A1 - Kunte, Hans-Jörg A1 - Toepel, Jörg T1 - A novel qPCR protocol for the specific detection and quantification of the fuel-deteriorating fungus Hormoconis resinae N2 - A wide variety of fungi and bacteria are known to contaminate fuels and fuel systems. These microbial contaminants have been linked to fuel system fouling and corrosion. The fungus Hormoconis resinae, a common jet fuel contaminant, is used in this study as a model for developing innovative risk assessment methods. A novel qPCR protocol to detect and quantify H. resinae in, and together with, total fungal contamination of fuel systems is reported. Two primer sets, targeting the markers RPB2 and ITS, were selected for their remarkable specificity and sensitivity. These primers were successfully applied on fungal cultures and diesel samples demonstrating the validity and reliability of the established qPCR protocol. This novel tool allows clarification of the current role of H. resinae in fuel contamination cases, as well as providing a technique to detect fungal outbreaks in fuel systems. This tool can be expanded to other well-known fuel-deteriorating microorganisms. KW - Microbial contamination KW - Real-time quantitative PCR KW - Microbiologically influenced corrosion; KW - Diesel biodeterioration KW - Fouling KW - Indicator PY - 2016 U6 - https://doi.org/10.1080/08927014.2016.1177515 SN - 0892-7014 VL - 32 IS - 6 SP - 635 EP - 644 PB - Taylor & Francis Group CY - Abingdon AN - OPUS4-37337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Toepel, Jörg A1 - Breitenbach, Romy A1 - Gorbushina, Anna A1 - Seiffert, Franz T1 - Untersuchung von gesteinsbesiedelnden Cyanobacteria und melanisierten Pilzen hinsichtlich der Biodeterioration und der beeinflussenden Komponenten T2 - 31. Dechematagung / Processnet Jahrestagung CY - Aachen, Germany DA - 2014-09-30 PY - 2014 AN - OPUS4-31627 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Breitenbach, Romy A1 - Toepel, Jörg A1 - Dementyeva, Polina A1 - Knabe, Nicole A1 - Gorbushina, Anna ED - Flemming, H.-C. ED - Neu, T. R. ED - Wingener, J. T1 - Snapshots of fungal extracellular matrices N2 - Fungal extracellular materials reinforce a constant interaction between their cell wall and the environment. A dynamic mixture of chitin, glucans, mannans, glycoproteins, glycolipids and pigments supports the success of all fungal life styles – from symbiotic to the free-living and pathogenic. Fungi are perfectly adapted to grow on surfaces and in porous environments, where they form medically and geochemically relevant biofilms. Fungal EPS are critical in adhesion to other fungi, other cells or substratum as well as in the following interaction with the host immune system or material they attack, degrade and deteriorate respectively. Characterisation of extracellular compounds and understanding of its function is necessary to limit damage caused by fungal activity. All necessary methodology from chemical characterization to complete genetic analyses has been developed for medically important fungi. Now it is time to apply this knowledge to the numerous, largely aerobic and very active organisms that occupy a wide range of atmosphere-exposed habitats in the upper lithosphere. One can expect that analogies between medically- and environmentally-relevant model fungal species will help us to address the dynamics of the fungal cell EPS matrix in much more efficient and widely applicable ways. KW - Fungal cell wall KW - Melanin KW - Fungal life styles KW - Environmental and pathogenic fungi KW - Model fungal biofilms KW - Biogenic weathering PY - 2016 SN - 9781780407418 SN - 9781780407425 U6 - https://doi.org/10.2166/9781780407418 SP - Chapter 14, 269 EP - 299 PB - IWA Publishing CY - London, UK AN - OPUS4-38094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martin-Sanchez, Pedro Maria A1 - Gebhardt, Christopher A1 - Toepel, Jörg A1 - Barry, J. A1 - Munzke, N. A1 - Günster, Jens A1 - Gorbushina, Anna T1 - Monitoring microbial soiling in photovoltaic systems: A qPCR-based approach N2 - Soiling of photovoltaic (PV) systems compromises their performance causing a significant power loss and demanding periodical cleaning actions. This phenomenon raises great concerns in the solar energy field, thus leading to notable research efforts over the last decades. Soiling is caused by a dual action of dust deposition and biofouling. However, surprisingly, the microbiological contribution to PV soiling is often overlooked or underestimated. In this study, a variety of qPCR-based methods have been developed to quantify the microbial load of fungi, bacteria and phototrophs on PV panels. These protocols were evaluated by comparison with culturedependent methods, and were implemented with real solar plants for two years. The results show that the developed molecular methods are highly sensitive and reliable to monitor the microbial component of the soiling. Fungal biomass was clearly dominant in all analysed PV modules, while bacteria and phototrophs showed much lower abundance. Light microscopy and qPCR results revealed that melanised microcolonial fungi and phototrophs are the main biofilm-forming microorganisms on the studied solar panels. In particular, the fungal qPCR protocol is proposed as a useful tool for monitoring of PV soiling, and investigating the microbial contribution to specific soiling cases. KW - Solar panels KW - PV modules KW - Real-time qPCR KW - Bacteria KW - Fungi KW - Phototrophs PY - 2018 U6 - https://doi.org/10.1016/j.ibiod.2017.12.008 SN - 0964-8305 VL - 129 SP - 13 EP - 22 PB - Elsevier Science AN - OPUS4-43892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epperlein, Nadja A1 - Menzel, Friederike A1 - Schwibbert, Karin A1 - Koter, Robert A1 - Bonse, Jörn A1 - Sameith, Janin A1 - Krüger, Jörg A1 - Toepel, Jörg T1 - Influence of femtosecond laser produced nanostructures on biofilm growth on steel N2 - Biofilm formation poses high risks in multiple industrial and medical settings. However, the robust nature of biofilms makes them also attractive for industrial applications where cell biocatalysts are increasingly in use. Since tailoring material properties that affect bacterial growth or its inhibition is gaining attention, here we focus on the effects of femtosecond laser produced nanostructures on bacterial adhesion. Large area periodic surface structures were generated on steel surfaces using 30-fs laser pulses at 790 nm wavelength. Two types of steel exhibiting a different corrosion resistance were used, i.e., a plain structural steel (corrodible) and a stainless steel (resistant to corrosion). Homogeneous fields of laser-induced periodic surface structures (LIPSS) were realized utilizing laser fluences close to the ablation threshold while scanning the sample under the focused laser beam in a multi-pulse regime. The nanostructures were characterized with optical and scanning electron microscopy. For each type of steel, more than ten identical samples were laser-processed. Subsequently, the samples were subjected to microbial adhesion tests. Bacteria of different shape and adhesion behavior (Escherichia coli and Staphylococcus aureus) were exposed to laser structures and to polished reference surfaces. Our results indicate that E. coli preferentially avoids adhesion to the LIPSS-covered areas, whereas S. aureus favors these areas for colonization. KW - Laser-induced periodic surface structures KW - Femtosecond laser KW - Steel KW - Biofilms KW - Microbial adhesion tests PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0169433217305470 U6 - https://doi.org/10.1016/j.apsusc.2017.02.174 SN - 0169-4332 SN - 1873-5584 VL - 418 IS - Part B SP - 420 EP - 424 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-40565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martin-Sanchez, Pedro Maria A1 - Gorbushina, Anna A1 - Toepel, Jörg T1 - Quantification of microbial load in diesel storage tanks using culture- and qPCR-based approaches N2 - Microbial contamination of fuels, associated with a wide variety of bacteria and fungi, leads to decreased product quality and can compromise equipment performance by biofouling and microbiologically influenced corrosion of pipelines and storage tanks. Detection and quantification of biomass are critical in monitoring fuel systems for an early detection of microbial outbreaks. The aims of this study are (i) to quantify bacterial and fungal contamination in samples from diesel storage tanks of petrol stations, using both culture dependent- and culture independent (qPCR) approaches, and (ii) to analyse the diversity of cultivable diesel-contaminating microorganisms with the purpose to create a strain collection for further use in biodeterioration experiments. Both methodological approaches revealed a high microbial contamination in all studied samples, with the bacterial load being much higher than the fungal load. The diversity of cultivable microorganisms was rather low. Based on criteria of abundance and fuel degradation potential, the most relevant microorganisms were identified as bacteria of genera Bacillus, Citrobacter, Burkholderia and Acetobacter, the filamentous fungi Paecilomyces variotii and Pseudallescheria boydii, and a Dipodascaceae yeast. Furthermore the validity and utility of qPCR-based methods are discussed. KW - Fuel contamination KW - Biofouling KW - Cultivation KW - Real-time qPCR KW - Bacteria KW - Fungi PY - 2016 U6 - https://doi.org/10.1016/j.ibiod.2016.04.009 SN - 0964-8305 SN - 1879-0208 VL - 126 SP - 216 EP - 223 PB - Elsevier Ltd. AN - OPUS4-41260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -