TY - CONF A1 - Schartel, Bernhard A1 - Timme, Sebastian A1 - Hörold, Andreas A1 - Trappe, Volker A1 - Korzen, Manfred T1 - Composites in fire: Intermediate-scale testing of sandwich panels and shells N2 - Intermediate-scale testing is indispensable when investigating the fire resistance under simultaneous compressive load of components made of glass- and carbon-fibre-reinforced composites (GFRP and CFRP). BAM is successfully operating an intermediate-scale test stand, developed for a specimen size of 500 mm x 500 mm (1000 mm). The fire resistance in terms of fire stability of CFRP and GFRP sandwiches are investigated, e.g. at 20 % of their compressive failure load at room temperature. Times to failure increase by up to a factor of 4 due to intumescent coatings. For GFRP sandwiches, different core structures with and without additional flame retardants show an astonishing impact on time to failure. CFRP shell structures are investigated on the intermediate scale with and without stringer reinforcements, resulting in completely different mechanical failure behaviour in the ultimate load test as opposed to the fire resistance test. The stringers become the only load-carrying part, while the shell acts as a protective layer. Thus the design exploiting this self-protection potential, i.e. the residue of the front skin protecting the load-bearing structure, is highlighted as a most promising route to enhance the fire resistance of lightweight materials. T2 - Interflam 2016 CY - Egham, Surrey, UK DA - 04.06.2016 KW - composite KW - fire stability KW - fire resistance KW - sandwich panels KW - shells KW - intermediate-scale testing PY - 2016 SN - 978-0-9933933-2-7 SN - 978-0-9933933-3-4 VL - 2 SP - 1465 EP - 1470 PB - Interscience communications AN - OPUS4-36892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Timme, Sebastian A1 - Trappe, Volker A1 - Korzen, Manfred A1 - Schartel, Bernhard T1 - Fire stability of carbon fiber reinforced polymer shells on the intermediate-scale N2 - The fire stability of carbon fiber reinforced polymer (CFRP) shell structures was investigated using an intermediate-scale test setup. The shell specimens are representative of typical load-bearing CFRPs in modern civil aviation. The CFRP shell specimens were exposed to a fully developed fire with direct flame impingement to one side at a heat flux of 182 kW/m2. Specimens were simultaneously loaded with constant compressive force equal to 40% of the ultimate failure load. CFRP shells and four different fire retarding configurations, using integrated protective layers, were investigated. Unprotected CFRP specimens failed after just 27 s. Specimens with integrated protective layers with low heat conductivity and high burn-through resistance showed the most promising results. An integrated titanium foil decelerated the decomposition of the epoxy matrix and increased the time to failure by 68% compared to the unprotected CFRP shell. KW - Fire stability KW - Carbon fiber reinforced polymer (CFRP) KW - Thermomechanical properties KW - Buckling KW - Fully developed fire PY - 2017 U6 - https://doi.org/10.1016/j.compstruct.2017.07.025 SN - 0263-8223 SN - 1879-1085 VL - 178 SP - 320 EP - 329 PB - Elsevier Ltd. AN - OPUS4-41283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -