TY - JOUR A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Maaß, Robert A1 - Deubener, J. A1 - Müller, Ralf T1 - Internal nucleation tendency and crystal surface energy obtained from bond energies and crystal lattice data N2 - We present an easy-to-apply method to predict structural trends in the internal nucleation tendency of oxide glasses. The approach is based on calculated crystal fracture surface energies derived from easily accessible diatomic bond energy and crystal lattice data. The applicability of the method is demonstrated on literature nucleation data for isochemically crystallizing oxide glasses. KW - Glass KW - Nucleation tendency KW - Fracture surface energy KW - Crystal lattice KW - Bond energy PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-548814 SN - 2590-1591 VL - 14 SP - 1 EP - 5 PB - Elsevier B.V. AN - OPUS4-54881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tielemann, Christopher A1 - Busch, R. A1 - Reinsch, Stefan A1 - Patzig, C. A1 - Höche, T. A1 - Avramov, I. A1 - Müller, Ralf T1 - Oriented surface nucleation in diopside glass N2 - Es wird die Texturbildung in kristallisierendem Diopsidglas im Zusammenhang mit der Oberflächenbeschaffenheit der unbehandelten Probe untersucht. Zudem wird der diskutiert, dass es sich bei der Texturbildung in Gläsern höchstwahrscheinlich um ein Nukleationsphänomen handelt welches auf die richtungsabhängige Grenzflächenenergie der kristallisierenden Phase zurückzuführen ist. N2 - Oriented surface crystallization on polished diopside glass surfaces has been studied with scanning electron microscopy, electron backscatter diffraction, transmission electron microscopy and laser scanning microscopy. An orientation preference of [001] parallel to the glass surface was detected for separately growing diopside crystals even as small as 700 nm in size. This finding shows that crystal orientation occurs in the outermost surface layer without crystal-crystal interaction and indicates that the crystal orientation is a result of oriented nucleation. Depending on surface preparation, monomodal crystal orientation distributions with [100] perpendicular to the surface or bimodal distributions with [100] and [010] perpendicular to the glass Surface were detected. It was also shown that the degree of crystal orientation increases with decreasing Surface roughness. The observed orientation of diopside crystals could be explained in terms of the interfacial energies of different crystal faces. KW - Surface energy KW - Glass ceramic KW - Glass KW - EBSD KW - Diopsid PY - 2021 UR - https://www.sciencedirect.com/science/article/pii/S002230932100020X U6 - https://doi.org/10.1016/j.jnoncrysol.2021.120661 SN - 0022-3093 VL - 562 PB - Elsevier B.V. AN - OPUS4-53073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scheffler, Franziska A1 - Fleck, Mirjam A1 - Busch, Richard A1 - Casado, Santiago A1 - Gnecco, Enrico A1 - Tielemann, Christopher A1 - Brauer, Delia S. A1 - Müller, Ralf T1 - Surface Crystallization of Barium Fresnoite Glass: Annealing Atmosphere, Crystal Morphology and Orientation N2 - Controlled oriented crystallization of glass surfaces is desired for high precision applications, since the uppermost crystal layer significantly influences the properties of the material. In contrast to previous studies, the data presented here deal with separated crystals growing at defect-free surfaces in four atmospheres with different degrees of humidity (ambient/dry air, argon and vacuum). A glass with the composition 2 BaO–TiO2–2.75 SiO2 was heat-treated at 825 °C until fresnoite (Ba2TiSi2O8) grew to a significant size. The crystal growth rate is found to increase with increasing humidity. The morphology of the crystals changes from highly distorted dendrites in the driest atmosphere (vacuum) to circular/spear-head-shaped crystals in the wettest atmosphere (ambient air), which we attribute to a decrease in viscosity of the glass surface due to water uptake. The least distorted crystals appear in the form of depressions of up to 6 µm. This has an influence on the observed crystal orientation, as measured by electron backscatter diffraction (EBSD). The pulled-in crystals change the orientation during growth relative to the flat glass surface due to an enrichment in SiO2 at the crystal fronts. This confirms that the orientation of crystals is not fixed following nucleation. KW - Fresnoite KW - Surface crystallization KW - Crystal growth KW - Crystal morphology KW - Crystal orientation KW - EBSD PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-587230 VL - 13 IS - 3 SP - 1 EP - 17 PB - MDPI AG CY - Basel AN - OPUS4-58723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Busch, R. A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Patzig, C. A1 - Krause, M. A1 - Höche, T. T1 - Sample preparation for analytical scanning electron microscopy using initial notch sectioning N2 - A novel method for broad ion beam based sample sectioning using the concept of initial notches is presented. An adapted sample geometry is utilized in order to create terraces with a well-define d step in erosion depth from the surface. The method consists of milling a notch into the surface, followed by glancing-angle ion beam erosion, which leads to preferential erosion at the notch due to increased local surface elevation. The process of terrace formation can be utilized in sample preparation for analytical scanning electron microscopy in order to get efficient access to the depth-dependent microstructure of a material. It is demonstrated that the method can be applied to both conducting and non-conducting specimens. Furthermore, experimental parameters influencing the preparation success are determined. Finally, as a proof-of-concept, an electron backscatter diffraction study on a surface crystallized diopside glass ceramic is performed, where the method is used to analyze orientation dependent crystal growth phenomena occurring during growth of surface crystals into the bulk. KW - 3D etching KW - Ion beam erosion Sectioning KW - EBSD KW - Sample preparation KW - Analytical scanning electron microscopy KW - SEM KW - Glass Ceramic KW - Glass KW - Diopsid PY - 2021 U6 - https://doi.org/10.1016/j.micron.2021.103090 SN - 0968-4328 VL - 150 PB - Elsevier B.V. AN - OPUS4-53075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -