TY - JOUR A1 - Schartel, Bernhard A1 - Kunze, Ralf A1 - Neubert, Dietmar A1 - Tidjani, Adams T1 - ZnS as fire retardant in plasticised PVC JF - Polymer International N2 - The flame retardant effect of zinc sulphide (ZnS) in plasticised poly(vinyl chloride) (PVC-P) materials was investigated. PVC-P containing different combinations of additives such as 5% ZnS, 5% of antimony oxide (Sb2O3) and 5% of mixtures based on Sb2O3 and ZnS were compared. The thermal degradation and the combustion behaviour were studied using thermogravimetry (TG), coupled with FTIR (TG-FTIR) or with mass spectroscopy (TG-MS), and a cone calorimeter, respectively. A detailed and unambiguous understanding of the decomposition and release of the pyrolysis products was obtained using both TG-MS and TG-FTIR. The influence of ZnS, Sb2O3 and the corresponding mixtures on the thermal decomposition of PVC-P was demonstrated. Synergism was observed for the combination of the two additives. The combustion behaviour (time to ignition, heat release, smoke production, mass loss, CO production) was monitored versus external heat fluxes between 30 and 75 kW m-2 with the cone calorimeter. Adding 5% of ZnS has no significant influence on the fire behaviour of PVC-P materials beyond a dilution effect, whereas Sb2O3 works as an effective fire retardant. Synergism of ZnS and Sb2O3 allows the possibility of replacing half of Sb2O3 by ZnS to reach equivalent fire retardancy. KW - PVC KW - ZnS KW - Fire retardancy KW - TG-FTIR KW - Cone calorimeter PY - 2002 DO - https://doi.org/10.1002/pi.845 SN - 0959-8103 SN - 1097-0126 SN - 0007-1641 VL - 51 IS - 3 SP - 213 EP - 222 PB - Wiley InterScience CY - Chichester, West Sussex AN - OPUS4-1291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tidjani, Adams A1 - Wald, Oliver A1 - Pohl, M.-M. A1 - Hentschel, Manfred P. A1 - Schartel, Bernhard T1 - Polypropylene-graft-maleic anhydride-nanocomposites: I-Characterization and thermal stability of nanocomposites produced under nitrogen and in air JF - Polymer degradation and stability N2 - The morphology and thermal behaviour of polypropylene–graft–maleic anhydride (PP–g–MA) layered silicate (montmorillonite) nanocomposites were investigated using X-ray diffraction, transmission electron microscopy, differential scanning calorimetry and thermogravimetry. The study focuses on the influence of the presence of oxygen during the preparation of PP–g–MA–nanocomposite using two different modified clays. The nanocomposites show tactoid, intercalated and exfoliated structures side by side with different dominant states depending on the clay used and on the processing conditions. The systems are described as multi-component blends rather than binary blends since the organic ions do not only change the mixing behaviour, but also influence material properties. Beside the physical barrier property of the clay layers also chemical processes were found to play an important role. KW - Polypropylene-graft-maleic anhydride KW - Montmorillonites KW - Nanocomposites KW - X-ray KW - Thermal stability PY - 2003 DO - https://doi.org/10.1016/S0141-3910(03)00174-5 SN - 0141-3910 SN - 1873-2321 VL - 82 IS - 1 SP - 133 EP - 140 PB - Applied Science Publ. CY - London AN - OPUS4-2773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -