TY - CONF A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Ahmadi, Samim T1 - Lock-in Thermography using High-Power Laser Sources T2 - Proceedings of the 12th European Conference on Non-destructive Testing 2018 N2 - Optical lock-in thermography is a completely contactless and very sensitive NDT technique. As an optical source of energy, incandescent lamps are most commonly used because they are relatively inexpensive and offer high irradiances at the test specimen. However, they are strongly restricted by their low modulation bandwidth with a maximum modulation frequency of only about 1 Hz. The use of high-power kilowattclass laser sources, e.g. diode laser arrays, pushes this constraint beyond 100 Hz. This allows for the exploration of the near-surface region of metals and layer systems with better and more accurate penetration depth and depth resolution. Moreover, these lasers are virtually free of any additional thermal radiation that could interfere with the “true” thermal response emitted from the heated sample. In turn, they can be easily used in a one-sided test configuration. We present current activities with kilowatt-class highpower laser sources for advanced lock-in thermography and focus on the application of laser arrays that offer a very high irradiation strength over a large sample area beyond the mentioned advantages. T2 - 12th European Conference on Non-destructive Testing CY - Gothenburg, Sweden DA - 11.06.2018 KW - Thermography KW - Laser Thermography KW - Lock-in Thermography PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-454466 UR - http://cdn.ecndt2018.com/wp-content/uploads/2018/05/ecndt-0139-2018.pdf SN - 978-91-639-6217-2 SP - ECNDT-0139-2018,1 EP - 7 AN - OPUS4-45446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Burgholzer, P. A1 - Berer, T. A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Ahmadi, Samim A1 - Gruber, J. A1 - Mayr, G. A1 - Hendorfer, G. T1 - Blind structured illumination as excitation for super-resolution photothermal radiometry T2 - Proceedings of the 14th QIRT Conference 2018 N2 - Using an infrared camera for radiometric imaging allows the contactless temperature measurement of multiple surface pixels simultaneously. From the measured surface data, a sub-surface structure, embedded inside a sample or tissue, can be reconstructed and imaged when heated by an excitation light pulse. The main drawback in radiometric imaging is the degradation of the spatial resolution with increasing depth, which results in blurred images for deeper lying structures. We circumvent this degradation with blind structured illumination, combined with a non-linear joint sparsity reconstruction algorithm. The ground-breaking concept of super-resolution can be transferred from optics to thermographic imaging. T2 - Conference QIRT 2018 CY - Berlin, Germany DA - 25.06.2018 KW - Thermography KW - Laser thermography KW - Super resolution PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-454506 SN - 978-3-940283-94-8 DO - https://doi.org/10.1080/17686733.2019.1655247 SP - We.3.A.2, 1 EP - 7 AN - OPUS4-45450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -