TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Benchmarking of polymer materials for tribological applications in hydrogen N2 - The focus of this study is to evaluate of hydrogen on the friction and wear behavior of a wide range of polymer materials. Thereby, the tribological performance of filled and unfilled polymers from different suppliers were compared at room temperature in air and hydrogen gas (H2) as well as in liquid hydrogen at -253°C (LH2). T2 - 62. Tribologie-Fachtagung der Gesellschaft für Tribologie e. V. CY - Online meeting DA - 27.09.2021 KW - Polymers KW - Hydrogen KW - Friction KW - Wear PY - 2021 AN - OPUS4-53700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Cano Murillo, Natalia A1 - Hausberger, A. T1 - Fretting behavior of elastomer materials in hydrogen T2 - Tagungsband der 63. Tribologie Fachtagung N2 - Safety and reliability are the major challenges to face for the development and acceptance of hydrogen technology. It is therefore crucial to study deeply material compatibility, in particular polymer materials that are directly in contact with hydrogen. This paper presents an experimental study on the fretting wear behavior of two types of cross-linked hydrogenated acrylonitrile butadiene rubbers against 316L steel ball in hydrogen environment. Furthermore, aging experiments were conducted for 7 days under static conditions in 100 MPa hydrogen. the influences of hydrogen pressure as well as the aging exposure on the fretting behavior are discussed by means of surface analyses along with the material properties. T2 - 63. Tribologie-Fachtagung 2022 CY - Göttingen, Germany DA - 26.09.2022 KW - Hydrogen KW - Polymer materials KW - Fretting KW - Wear PY - 2022 SN - 978-3-9817451-7-7 SP - 58/1 EP - 58/3 AN - OPUS4-56022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Friction and wear characteristics of polymers in gaseous and liquid T2 - Reibung, Schmierung und Verschleiß N2 - In the present work it was shown that the the aim of the presented tests is to investigate polymer composites for their suitability for friction systems in gaseous and liquid hydrogen. T2 - 59. Tribologie-Fachtagung CY - Göttingen, Germany DA - 24.09.2018 KW - Friction KW - Wear KW - Polymer composites KW - Hydrogen KW - Cryogenic temperature PY - 2018 SN - 978-3-9817451-3-9 SP - 60/1 EP - 60/4 AN - OPUS4-46178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Friction and wear characteristics of polymers in gaseous and liquid hydrogen N2 - The tribological characteristics of pure and graphite filled polymers were investigated in gaseous hydrogen at ambient temperatures and in LH2 at -253°C. It could be shown that the tribological properties of PI and PEEK materials is related to the formation of a transfer film. The influence of both hydrogen and cryogenic temperatures will be discussed in the presentation. T2 - 21th International Colloquium Tribology CY - Stuttgart/Ostfildern, Germany DA - 09.01.2018 KW - Friction KW - Wear KW - Hydrogen KW - PEEK PY - 2018 AN - OPUS4-43902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Friction and wear characteristics of polymers in gaseous and liquid hydrogen T2 - Industrial and Automotive Lubrication N2 - The tribological characteristics of pure and graphite filled polymers were investigated in gaseous hydrogen at ambient temperatures and in LH2 at -253°C. It could be shown that the tribological properties of PI and PEEK materials is related to the formation of a transfer film. The influence of both hydrogen and cryogenic temperatures will be discussed in the presentation. T2 - 21th International Colloquium Tribology CY - Stuttgart/Ostfildern, Germany DA - 09.11.2018 KW - Friction KW - Wear KW - Hydrogen KW - PEEK PY - 2018 SP - 1 EP - 2 AN - OPUS4-43903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Friction and wear characteristics of polymers in gaseous and liquid hydrogen N2 - The presentation deals with the investigation of polymer composites for their suitability for friction systems in gaseous and liquid hydrogen. T2 - 59. Tribologie-Fachtagung CY - Goettingen, Germany DA - 24.09.2018 KW - Friction KW - Wear KW - Polymer composites KW - Hydrogen KW - Cryogenic temperature PY - 2018 AN - OPUS4-46184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - High performance polymer materials for tribological applications in hydrogen and methane T2 - 7th European Conference on Tribology & 4th Austria-India-Symposium on Materials Engineering and Tribology N2 - The development of hydrogen technologies is a key strategy to reduce greenhouse gas emission worldwide. Power-to-Gas is a challenging solution, in which hydrogen and methane can be used in mobility, industry, heat supply and electricity generation applications. This presentation deals with the tribological behaviour of polymer materials in hydrogen and methane, both in gas and in liquefied form. T2 - ECOTRIB 2019, MaTri'19 CY - Vienna, Austria DA - 12.06.2019 KW - Slidng wear KW - Polymer materials KW - Hydrogen KW - Methane PY - 2019 SN - 978-3-901657-60-3 SP - 228 EP - 229 AN - OPUS4-48253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Influence of the counterface on the sliding behavior of polymer materials in hydrogen N2 - This presentation deals with the influence of the counterface materials on the sliding behaviour of some polymer materials in hydrogen. Polyimide (PI), polyetheretherketone (PEEK) and Polytetrafluoroethylene (PTFE) materials were investigated against hardened 52100 martensitic bearing steel and 304 austenitic stainless steel with similar roughness (Ra = 0.2 μm). Results indicate that the friction and wear of PI and PEEK materials depend on the counterface material. This effect wasn’t observed for PTFE composites. While the tribological performance of polyimide is better against 52100 in hydrogen, improved sliding behaviour of PEEK materials is observed with 304 counterface, particularly at higher sliding speed. Surface analyses of the transfer film reveal that the influence of the counterface is primarily related to the chemical nature of the steel for PI and to the thermal conductivity of the disc for PEEK materials. T2 - Hydrogenius & I2CNER Tribology Symposium CY - Online meeting DA - 29.01.2021 KW - Polymers KW - Hydrogen KW - Counterface KW - Friction KW - Wear PY - 2021 AN - OPUS4-52093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine T1 - Sliding behaviour of polymer materials in hydrogen N2 - This lecture deals with the sliding behaviour of polymer materials in hydrogen environment. After a short introduction of the hydrogen activities at BAM, the tribological performances of polymer materials in gaseous hydrogen are presented and compared with air and vacuum environment. The second part focusses on the influence of the counterface materials in hydrogen. Finally, the last section is dedicated to experiments liquid hydrogen. T2 - Invited lecture, TRIBOS+ program at Lulea University of Technology CY - Lulea, Sweden DA - 30.06.2021 KW - Polymers KW - Hydrogen KW - Friction KW - Wear PY - 2021 AN - OPUS4-53708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Sliding performance of polymer materials in hydrogen and methane N2 - In this talk, the sliding performance of polymer materials in hydrogen and methane are presented. The influence of the environmental conditions is discussed in terms of material composition, counterface, transfer film formation, and triboreactions. T2 - International Tribology Conference/ITC CY - Sendai, Japan DA - 17.09.2019 KW - Friction KW - Wear KW - Polymer composites KW - Hydrogen KW - Methane PY - 2019 AN - OPUS4-49148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -