TY - CONF A1 - Long, Lijia A1 - Thöns, S. A1 - Döhler, M. T1 - The effects of deterioration models on the value of damage detection information N2 - This paper addresses the effects of the deterioration on the value of damage detection information. The quan-tification of the value of damage detection information for deteriorated structures is based on Bayesian pre-posterior decision analysis, comprising structural system performance models, consequence, benefit and costs models and damage detection information models throughout the service life of a structural system. The value of damage detection information accounts for the relevance and precision of the information to ensure the structural integrity and to reduce the potential structural system risks and expected costs throughout the ser-vice life before implementing damage detection system. With the developed approach, the value of damage detection information for a statically determinate Pratt truss bridge girder subjected to different deterioration models is calculated. The analysis shows the impact of the deterioration model parameters on the value of damage detection information. The results can be used to develop optimal maintenance strategies before im-plementation of the damage detection system. T2 - Sixth International Symposium on Life-Cycle Civil Engineering CY - Ghent, Belgium DA - 28.10.2018 KW - Value of information KW - Damage detection system KW - Deterioration model PY - 2018 SN - 978-1-138-62633-1 SN - 978-1-315-22891-4 SP - 2137 EP - 2144 PB - Taylor & Francis Group AN - OPUS4-46465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Rogge, Andreas A1 - Thöns, S. A1 - Bismut, E. A1 - Straub, D. ED - Caspeele, Robby ED - Taerwe, Luc ED - Frangopol, Dan M. T1 - A sampling-based approach to identifying optimal inspection and repair strategies for offshore jacket structures N2 - Identifying optimal inspection and repair strategies for offshore jacket structures is a challenging task. We pre-sent an approach, which is based on recent developments in the field of risk-based operation and maintenance planning at the structural system level. The approach utilizes heuristics to define inspection and repair strate-gies at the system level and to reduce the search space of possible strategies. For each defined strategy, the expected service life cost of inspection, repair and failure is evaluated based on simulated inspection and re-pair histories. Subset simulation is applied to compute the conditional repair and failure probabilities required for this analysis. It also forms the basis for simulating inspection and repair histories. The strategy that mini-mizes the expected service life cost is the optimal one in the set of pre-selected strategies. The underlying condition and performance model accounts for the stochastic dependence among the deterioration states of the different structural elements and the structural redundancy. The approach is demonstrated in a case study considering a jacket-type frame. In this study, we essentially vary the inspection interval, the minimum num-ber of inspected components and the target reliability, and identify the combination that minimizes the ex-pected total service life cost. T2 - The sixth international symposium on life-cycle civil engineering (IALCCE 2018) CY - Ghent, Belgien DA - 28.10.2018 KW - Offshore steel structures KW - Fatigue KW - Reliability KW - Risk KW - Inspection planning PY - 2019 SN - 978-1-138-62633-1 SN - 978-1-315-22891-4 SP - 1081 EP - 1088 PB - Taylor & Francis Group CY - London AN - OPUS4-46434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -