TY - JOUR A1 - Tan, K. H. A1 - Sattari, S. A1 - Donskyi, Ievgen A1 - Cuellar-Camacho, J. L. A1 - Cheng, C. A1 - Schwibbert, Karin A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Gorbushina, Anna A1 - Adeli, M. A1 - Haag, R. T1 - Functionalized 2D nanomaterials with switchable binding to investigate graphene–bacteria interactions N2 - Graphene and its derivatives have recently attracted much attention for sensing and deactivating pathogens. However, the mechanism of multivalent interactions at the graphene–pathogen interface is not fully understood. Since different physicochemical parameters of graphene play a role at this interface, control over graphene’s structure is necessary to study the mechanism of these interactions. In this work, different graphene derivatives and also zwitterionic graphene nanomaterials (ZGNMs) were synthesized with defined exposure, in terms of polymer coverage and functionality, and isoelectric points. Then, the switchable interactions of these nanomaterials with E. coli and Bacillus cereus were investigated to study the validity of the generally proposed “trapping” and “nano-knives” mechanisms for inactivating bacteria by graphene derivatives. It was found that the antibacterial activity of graphene derivatives strongly depends on the accessible area, i.e. edges and basal plane of sheets and tightness of their agglomerations. Our data clearly confirm the authenticity of “trapping” and “nano-knives” mechanisms for the antibacterial activity of graphene sheets. KW - XPS KW - Graphene KW - Graphene–bacteria interaction PY - 2018 U6 - https://doi.org/10.1039/c8nr01347k SN - 2040-3364 SN - 2040-3372 VL - 10 IS - 20 SP - 9525 EP - 9537 PB - RSC CY - London AN - OPUS4-45084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tan, K. H. A1 - Sattari, S. A1 - Beyranvand, S. A1 - Faghani, A. A1 - Ludwig, K. A1 - Schwibbert, Karin A1 - Böttcher, C. A1 - Haag, R. A1 - Adeli, M. T1 - Thermoresponsive Amphiphilic Functionalization of Thermally Reduced Graphene Oxide to Study Graphene/Bacteria Hydrophobic Interactions N2 - An understanding of the interactions of 2D nanomaterials with pathogens is of vital importance to developing and controlling their antimicrobial properties. In this work, the interaction of functionalized graphene with tunable hydrophobicity and bacteria is investigated. Poly-(ethylene glycol)-block-(poly-N-isopropylacrylamide) copolymer (PEG-b-PNIPAM) with the triazine joint point was attached to the graphene Surface by a nitrene [2 + 1] cycloaddition reaction. By thermally switching between hydrophobic and hydrophilic states, functionalized graphene sheets were able to bind to bacteria. Bacteria were eventually disrupted when the functionality was switched to the hydrophobic state. On the basis of measuring the different microscopy methods and a live/dead viability assay, it was found that Escherichia coli (E. coli) bacteria are more susceptible to hydrophobic interactions than B. cereus bacteria, under the same conditions. Our investigations confirm that hydrophobic interaction is one of the main driving forces at the presented graphene/bacteria interfaces and promotes the antibacterial activity of graphene derivatives significantly. KW - 2D nanomaterials KW - Functionalized graphene KW - Antimicrobial KW - Hydrophobic interaction PY - 2019 U6 - https://doi.org/10.1021/acs.langmuir.8b03660 VL - 35 IS - 13 SP - 4736 EP - 4746 PB - ACS Publications AN - OPUS4-49235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -