TY - CONF A1 - Symietz, Christian A1 - Lehmann, Erhard A1 - Gildenhaar, Renate A1 - Hackbarth, Andreas A1 - Berger, Georg A1 - Krüger, Jörg T1 - Mechanical stability of Ti6Al4V implant material after femtosecond laser irradiation T2 - European Materials research Society (EMRS) Spring Meeting 2012 CY - Strasbourg, France DA - 2012-05-14 PY - 2012 AN - OPUS4-25703 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Symietz, Christian A1 - Lehmann, Erhard A1 - Gildenhaar, Renate A1 - Berger, Georg A1 - Krüger, Jörg T1 - Femtosecond laser induced fixation of bioactive ceramic powder on Ti6Al4V bone implantat material T2 - 2nd International Symposium on Materials Processing Science with Lasers as Energy Sources CY - Clausthal-Zellerfeld, Germany DA - 2012-04-24 PY - 2012 AN - OPUS4-25966 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Symietz, Christian A1 - Lehmann, Erhard A1 - Gildenhaar, Renate A1 - Hackbarth, Andreas A1 - Berger, Georg A1 - Krüger, Jörg T1 - Mechanical stability of Ti6Al4V implant material after femtosecond laser irradiation N2 - The surface of a titanium alloy (Ti6Al4V) implant material was covered with a bioactive calcium alkali phosphate ceramic with the aim to accelerate the healing and to form a stronger bond to living bone tissue. To fix the ceramic powder we used a femtosecond laser, which causes a thin surface melting of the metal. It is a requirement to prove that the laser irradiation would not reduce the lifetime of implants. Here we present the results of mechanical stability tests, determined by the rotating bending fatigue strength of sample rods. After describing the sample surfaces and their modifications caused by the laser treatment we give evidence for an unchanged mechanical stability. This applies not only to the ceramic fixation but also to a comparatively strong laser ablation. KW - Aluminium alloys KW - Bending strength KW - Bioceramics KW - Bone KW - Calcium compounds KW - Fatigue KW - Fatigue testing KW - High-speed optical techniques KW - Laser ablation KW - Melting KW - Orthopaedics KW - Prosthetics KW - Rods (structures) KW - Surface treatment KW - Titanium alloys KW - Vanadium alloys PY - 2012 U6 - https://doi.org/10.1063/1.4737576 SN - 0021-8979 SN - 1089-7550 VL - 112 IS - 2 SP - 023103-1 - 023103-5 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-26200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Symietz, Christian A1 - Lehmann, Erhard A1 - Berger, Georg A1 - Krüger, Jörg T1 - Fixation of bioactive calcium alkali phosphate on Ti6Al4V implant material with femtosecond laser pulses T2 - European Materials Reserarch Society, EMRS, Spring Meeting 2010 CY - Strasbourg, France DA - 2010-06-07 PY - 2010 AN - OPUS4-21027 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Symietz, Christian A1 - Krüger, Jörg ED - Vilar, Rui T1 - Stability of laser surface modified implants N2 - A new technique to fix bioceramic powder on a titanium alloy by using femtosecond laser pulses is presented. It is shown that gentle fixation of a bioactive dielectric material on a metallic model implant is successful. This is potentially a new tool for the improvement of bone prostheses. An advantage of the ultrashort pulses is the very low heat influx into the whole sample. There is only a very thin interaction zone during the fixing, which is the metal surface in contact with the ceramic layer. Neither the fixed ceramic particles nor the major part of the metal suffer any modification. The stability of the model implant (ceramic on metal) is investigated by rotating bending fatigue tests. No indication of a reduction of the mechanical stability compared to untreated metallic reference samples was found. KW - Bone implant KW - Calcium phosphate coating KW - Femtosecond laser KW - Laser-induced fixation KW - Titanium alloy PY - 2016 SN - 978-0-08-100883-6 SN - 978-0-08-100942-0 U6 - https://doi.org/10.1016/B978-0-08-100883-6.00004-6 SN - 2049-9485 IS - 111 SP - Chapter 4, 127 EP - 143 PB - Elsevier ET - 1st edition AN - OPUS4-36790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Symietz, Christian A1 - Lehmann, Erhard A1 - Gildenhaar, Renate A1 - Krüger, Jörg A1 - Berger, Georg T1 - Femtosecond laser induced fixation of calcium alkali phosphate ceramics on titanium alloy bone implant material N2 - Femtosecond lasers provide a novel method of attaching bioceramic material to a titanium alloy, thereby improving the quality of bone implants. The ultrashort 30 fs laser pulses (790 nm wavelength) penetrate a thin dip-coated layer of fine ceramic powder, while simultaneously melting a surface layer of the underlying metal. The specific adjustment of the laser parameters (pulse energy and number of pulses per spot) avoids unnecessary melting of the bioactive calcium phosphate, and permits a defined thin surface melting of the metal, which in turn is not heated throughout, and therefore maintains its mechanical stability. It is essential to choose laser energy densities that correspond to the interval between the ablation fluences of both materials involved: about 0.1-0.4 J cm-2. In this work, we present the first results of this unusual technique, including laser ablation studies, scanning electron microscopy and optical microscope images, combined with EDX data. KW - Bone implant KW - Bioceramic coating KW - Titanium KW - Calcium phosphate KW - Femtosecond laser PY - 2010 U6 - https://doi.org/10.1016/j.actbio.2010.02.016 SN - 1742-7061 VL - 6 IS - 8 SP - 3318 EP - 3324 PB - Elsevier CY - Amsterdam AN - OPUS4-21446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Symietz, Christian A1 - Lehmann, Erhard A1 - Gildenhaar, Renate A1 - Koter, Robert A1 - Berger, Georg A1 - Krüger, Jörg T1 - Fixation of bioactive calcium alkali phosphate on Ti6Al4V implant material with femtosecond laser pulses N2 - Bone implants made of metal, often titanium or the titanium alloy Ti6Al4V, need to be surface treated to become bioactive. This enables the formation of a firm and durable connection of the prosthesis with the living bone. We present a new method to uniformly cover Ti6Al4V with a thin layer of ceramics that imitates bone material. These calcium alkali phosphates, called GB14 and Ca10, are applied to the metal by dip coating of metal plates into an aqueous slurry containing the fine ceramic powder. The dried samples are illuminated with the 790 nm radiation of a pulsed femtosecond laser. If the laser fluence is set to a value just below the ablation threshold of the ceramic (ca. 0.4 J/cm²) the 30 fs laser pulses penetrate the partly transparent ceramic layer of 20–40 µm thickness. The remaining laser fluence at the ceramic–metal interface is still high enough to generate a thin metal melt layer leading to the ceramic fixation on the metal. The laser processing step is only possible because Ti6Al4V has a lower ablation threshold (between 0.1 and 0.15 J/cm²) than the ceramic material. After laser treatment in a fluence range between 0.1 and 0.4 J/cm², only the particles in contact with the metal withstand a post-laser treatment (ultrasonic cleaning). The non-irradiated rest of the layer is washed off. In this work, we present results of a successful ceramic fixation extending over larger areas. This is fundamental for future applications of arbitrarily shaped implants. KW - Bone implant KW - Bioceramic coating KW - Titanium KW - Calcium phosphate KW - Femtosecond laser PY - 2011 U6 - https://doi.org/10.1016/j.apsusc.2010.10.046 SN - 0169-4332 SN - 1873-5584 VL - 257 IS - 12 SP - 5208 EP - 5212 PB - North-Holland CY - Amsterdam AN - OPUS4-23310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Symietz, Christian A1 - Lehmann, Erhard A1 - Gildenhaar, Renate A1 - Krüger, Jörg A1 - Berger, Georg T1 - Fixierung resorbierbarer Knochenersatzkeramik auf Ti6Al4V-Implantatmaterial mittels Femtosekundenlaser T2 - 5. Thüringer Grenz- und Oberflächentage und 7. Thüringer Biomaterial-Kolloquium CY - Friedrichroda, Deutschland DA - 2009-09-15 KW - Metallprothese KW - Implantat KW - Knochenersatz KW - Bioaktives Material KW - Lasersintern KW - Femtosekundenlaser PY - 2009 SN - 978-3-00-028446-5 SP - 327 AN - OPUS4-20051 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Symietz, Christian A1 - Lehmann, Erhard A1 - Gildenhaar, Renate A1 - Krüger, Jörg A1 - Berger, Georg T1 - Fixierung resorbierbarer Knochenersatzkeramik auf Ti6AI4V- Implantatmaterial mittels Femtosekundenlaser T2 - 7. Thüringer Biomaterial-Kolloquium CY - Friedrichroda, Germany DA - 2009-09-17 PY - 2009 AN - OPUS4-20037 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ringleb, F. A1 - Eylers, K. A1 - Teubner, T. A1 - Boeck, T. A1 - Symietz, Christian A1 - Bonse, Jörn A1 - Andree, Stefan A1 - Krüger, Jörg A1 - Heidmann, B. A1 - Schmid, M. A1 - Lux-Steiner, M. T1 - Regularly arranged indium islands on glass/molybdenum substrates upon femtosecond laser and physical vapor deposition processing N2 - A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Based on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD. KW - Femtosecond laser KW - Physical vapor deposition KW - Indium KW - Molybdenum substrate KW - Microconcentrator solar cell PY - 2016 U6 - https://doi.org/10.1063/1.4943794 SN - 0003-6951 VL - 108 IS - 11 SP - 111904-1 EP - 111904-4 AN - OPUS4-35602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ringleb, F. A1 - Eylers, K. A1 - Teubner, T. A1 - Schramm, H.-P. A1 - Symietz, Christian A1 - Bonse, Jörn A1 - Andree, Stefan A1 - Heidmann, B. A1 - Schmid, M. A1 - Krüger, Jörg A1 - Boeck, T. T1 - Growth and shape of indium islands on molybdenum at micro-roughened spots created by femtosecond laser pulses N2 - Indium islands on molybdenum coated glass can be grown in ordered arrays by surface structuring using a femtosecond laser. The effect of varying the molybdenum coated glass substrate temperature and the indium deposition rate on island areal density, volume and geometry is investigated and evaluated in a physical vapor deposition (PVD) process. The joined impact of growth conditions and spacing of the femtosecond laser structured spots on the arrangement and morphology of indium islands is demonstrated. The results yield a deeper understanding of the island growth and its precise adjustment to industrial requirements, which is indispensable for a technological application of such structures at a high throughput, for instance as precursors for the preparation of Cu(In,Ga)Se2 micro concentrator solar cells. KW - Indium islands KW - Femtosecond laser patterning KW - Diffusion KW - CIGSe micro solar cells PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0169433216325764 U6 - https://doi.org/10.1016/j.apsusc.2016.11.135 SN - 0169-4332 SN - 1873-5584 VL - 418 SP - 548 EP - 553 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-40551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -