TY - JOUR A1 - Beke, S. A1 - Sugioka, K. A1 - Midorikawa, K. A1 - Péter, Á. A1 - Nánai, L. A1 - Bonse, Jörn T1 - Characterization of the ablation of TeO2 crystals in air with femtosecond laser pulses N2 - Femtosecond (fs) laser pulse ablation (pulse duration of 150 fs, wavelength of 775 nm, repetition rate of 1 kHz) of single-crystalline TeO2 surfaces was performed in air using the direct focusing technique. The lateral and vertical dimensions of laser ablated craters as well as the laser damage thresholds were evaluated for different pulse numbers applied to the same spot. The joint observation using optical microscopy, atomic force microscopy and scanning electron microscopy revealed the surface morphology of the ablated craters and also showed that the ablation threshold depends significantly on the number of laser pulses applied to the same spot due to incubation effects. The incubation effects change the absorption processes involved in fs-laser ablation of the transparent material from multiphoton absorption to a single-photon absorption. These results are discussed on the basis of recent models of the interaction of fs-laser pulses with dielectrics. KW - Femtosecond laser ablation KW - Damage threshold KW - TeO2 KW - Dielectrics PY - 2010 U6 - https://doi.org/10.1088/0022-3727/43/2/025401 SN - 0022-3727 SN - 1361-6463 VL - 43 IS - 2 SP - 025401-1 - 025401-6 PB - IOP Publ. CY - Bristol AN - OPUS4-20665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beke, S. A1 - Kobayashi, T. A1 - Sugioka, K. A1 - Midorikawa, K. A1 - Bonse, Jörn T1 - Time-of-flight mass spectroscopy of femtosecond and nanosecond laser ablated TeO2 crystals N2 - Single-pulse femtosecond (fs) (pulse duration ~200 fs, wavelength 398 nm) and nanosecond (ns) (pulse duration 4 ns, wavelength 355 nm) laser ablation have been applied in combination with time-of-flight mass spectrometer (TOFMS) to analyze the elemental composition of the plasma plume of single-crystalline telluria (c-TeO2, grown by the balance controlled Czochralski growth method). Due to the three-order difference of the peak intensities of the ns and fs-laser pulses, significant differences were observed regarding the laser-induced species in the plasma plume. Positive singly, doubly and triply charged Te ions (Te+, Te2+, Te3+) in the form of their isotopes were observed in case of both irradiations. In case of the ns-laser ablation the TeO+ formation was negligible compared to the fs case and there was no Te trimer (Te3+) formation observed. It was found that the amplitude of Te ion signals strongly depended on the applied laser pulse energy. Singly charged oxygen ions (O+) are always present as a byproduct in both kinds of laser ablation. KW - Time-of-flight mass spectroscopy KW - Tellurium dioxide crystals KW - second laser KW - Nanosecond laser KW - Ablation PY - 2011 U6 - https://doi.org/10.1016/j.ijms.2010.08.022 SN - 0168-1176 SN - 0020-7381 SN - 1387-3806 SN - 1873-2798 VL - 299 IS - 1 SP - 5 EP - 8 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-22490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -