TY - JOUR A1 - Su, H. A1 - Wu, Chuan Song A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Simultaneous measurement of tool torque, traverse force and axial force in friction stir welding N2 - Simultaneous measurement of the tool torque, traverse force and axial force during friction stir welding process is of great significance to the understanding of the underlying process mechanism and the optimizing of the process parameters. Different from the traditional measurement methods using load cell or rotating component dynamometer, an indirect but economical methodology is used in this study for the simultaneous measurement of the traverse force, axial force and tool torque by monitoring the output torques of the servo motors and main spindle three-phase AC induction motor inside the FSW machine. The values of the traverse force, axial force and tool torque are determined under different welding conditions, and the influencing factors are examined. The measured results in friction stir welding of AA2024-T4 aluminum alloys at different combinations of tool rotation speed and welding speed lay foundation for process optimization. KW - Friction stir welding KW - Measurement KW - Traverse force KW - Axial force KW - Tool torque PY - 2013 U6 - https://doi.org/10.1016/j.jmapro.2013.09.001 SN - 0278-6125 SN - 1526-6125 VL - 15 IS - 4 SP - 495 EP - 500 PB - Elsevier Ltd. CY - Dearborn, Mich., USA AN - OPUS4-29688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Su, H. A1 - Wu, Chuan Song A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Thermal energy generation and distribution in friction stir welding of aluminum alloys N2 - The accurate prediction of the thermal energy generation and distribution in friction stir welding process is of great significance for the optimization of the process parameters and the understanding of the underlying mechanisms. In this study, a new method of integrative calculation and measurement is proposed to obtain the more reasonable values of the frictional coefficient and the slip rate, which are both used to characterize the heat generation rate at the tool-workpiece contact interfaces. A three-dimensional model is established to fully couple the energy generation, heat transfer and material flow in friction stir welding of aluminum alloys. The energy produced by both interfacial friction and plastic deformation are taken into consideration. The analysis accuracy of the thermal energy generation and distribution is improved, and the distribution features of thermal energy density in the vicinity of the tool are elucidated. The predicted peak temperature values at some locations are in agreement with the experimentally measured ones. KW - Thermal energy generation KW - Energy density distribution KW - Heat transfer KW - Material flow KW - Friction stir welding PY - 2014 U6 - https://doi.org/10.1016/j.energy.2014.09.045 SN - 0360-5442 VL - 77 SP - 720 EP - 731 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-32076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Su, H. A1 - Wu, Chuan Song A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical modeling for the effect of pin profiles on thermal and material flow characteristics in friction stir welding N2 - Understanding the influence of tool/pin shapes on the thermal and material flow behaviors in friction stir welding is of great significance for the optimal design of tool/pin based on a scientific principle. In this study, a numerical method based on computational fluid dynamics is employed to quantitatively analyze the thermo-physical phenomena in friction stir welding with two tools of different pin shapes (axisymmetrical conical tool and asymmetrical triflat tool). Through combining a steady state model with a transient state model, both the computation efficiency and accuracy are ensured. The boundary conditions of heat transfer and material flow are determined with considering a partial sticking/sliding contact condition at the tool–workpiece interface. The total heat generation, heat density and temperature distribution during the welding process with triflat tool are elucidated and compared with that of conical tool, and the material flow patterns and deformation regions of various pin orientations are illustrated in detail. It is found that the deformation zone caused by triflat tool is larger than that by conical tool, which is validated by the weld macrographs. The computed thermal cycles and peak temperature values at some locations are in good agreement with the experimentally measured ones. KW - Friction stir welding KW - Pin profile KW - Heat generation KW - Material flow KW - Modeling PY - 2015 U6 - https://doi.org/10.1016/j.matdes.2015.04.012 SN - 0261-3069 SN - 0264-1275 VL - 77 SP - 114 EP - 125 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-33031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fu, B. A1 - Shen, J. A1 - Suhuddin, U. A1 - Su, H. A1 - dos Santos, J. A1 - Rethmeier, Michael T1 - Microstructure and mechanical properties of a modified refill friction stir spot welds of AM50 magnesium alloy N2 - Magnesium (Mg) alloys have attracted much attention due to their merits of meeting requirements of lightweight, energy-efficient and environmental friendly engineering. In this study, a modified refill friction stir spot welding (refill-FSSW) method is proposed to weid AMSO Mg alloy, in which pin and sleeve rotate at different states. Effects of process parameters on the microstructure, material flow, and mechanical properties of welds were studied. Results showed that, the modified refill-FSSW technology could enhance the intennixing of material by changing the flow state. Lap shear strength of welds could be significantly improved with changed failure modes. The modified refill FSSW technology is a competitive welding method for Mg alloy. T2 - 7th International Conference on Welding Science and Engineering in conjunction with 3rd International Symposium on Computer-Aided Welding Engineering CY - Jinan, China DA - 18.10.2017 KW - Refill friction stir spot welding KW - Friction spot welding KW - Magnesium KW - Microstructure KW - Mechanical properties PY - 2017 SP - 203 EP - 206 AN - OPUS4-43234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, F. A1 - Lakey, P. S. J. A1 - Berkemeier, T. A1 - Tong, H. A1 - Kunert, A. T. A1 - Meusel, H. A1 - Cheng, Y. A1 - Su, H. A1 - Fröhlich-Nowoisky, J. A1 - Lai, S. A1 - Weller, Michael G. A1 - Shiraiwa, M. A1 - Pöschl, U. A1 - Kampf, C. J. T1 - Atmospheric protein chemistry influenced by anthropogenic air pollutants: nitration and oligomerization upon exposure to ozone and nitrogen dioxide N2 - The allergenic potential of airborne proteins may be enhanced via post-translational modification induced by air pollutants like ozone (O3) and nitrogen dioxide (NO2). The molecular mechanisms and kinetics of the chemical modifications that enhance the allergenicity of proteins, however, are still not fully understood. Here, protein tyrosine nitration and oligomerization upon simultaneous exposure of O3 and NO2 were studied in coated-wall flow-tube and bulk solution experiments under varying atmospherically relevant conditions (5–200 ppb O3, 5–200 ppb NO2, 45–96% RH), using bovine serum albumin as a model protein. Generally, more tyrosine residues were found to react via the nitration pathway than via the oligomerization pathway. Depending on reaction conditions, oligomer mass fractions and nitration degrees were in the ranges of 2.5–25% and 0.5–7%, respectively. The experimental results were well reproduced by the kinetic multilayer model of aerosol surface and bulk chemistry (KM-SUB). The extent of nitration and oligomerization strongly depends on relative humidity (RH) due to moisture-induced phase transition of proteins, highlighting the importance of cloud processing conditions for accelerated protein chemistry. Dimeric and nitrated species were major products in the liquid phase, while protein oligomerization was observed to a greater extent for the solid and semi-solid phase states of proteins. Our results show that the rate of both processes was sensitive towards ambient ozone concentration but rather insensitive towards different NO2 levels. An increase of tropospheric ozone concentrations in the Anthropocene may thus promote pro-allergic protein modifications and contribute to the observed increase of allergies over the past decades. KW - Oxidation KW - Nitration KW - Cross-linking KW - Ozone KW - Nitrogen dioxide KW - Dimer KW - Air pollution KW - Diesel KW - Aeroallergens KW - Pollen KW - Tyrosine KW - Nitrotyrosine KW - BSA KW - Albumin PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-418482 SN - 1359-6640 VL - 200 SP - 413 EP - 427 PB - Royal Society of Chemistry CY - London AN - OPUS4-41848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -