TY - JOUR A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Jäger, Christian A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten T1 - Sulfuric acid resistance of one-part alkali-activated mortars N2 - One-part alkali-activated (geopolymer) mortars based on three different silica-rich starting materials and sodium aluminate, with and without ground granulated blast furnace slag (GGBFS) addition, were tested regarding sulfuric acid resistance according to DIN 19573:2016-03 (70 days at pH = 1). Corresponding pastes were characterized by XRD, SEM, chemical analysis, 29Si MAS NMR and 1H-29Si CPMAS NMR after water storage and after acid exposure. The mortars exhibited a high resistance against sulfuric acid attack, with the best ones conforming to the requirements of DIN 19573:2016-03. The analytical results showed that this was due to precipitation of silica gel at the acid-mortar interface, which formed a mechanically stable layer that protected the subjacent mortar and thus inhibited further degradation. The addition of GGBFS decreased the acid resistance via formation of expansive calcium sulfate phases. KW - Alkali activated materials KW - Acid resistance KW - Nuclear magnetic resonance KW - One-part geopolymers PY - 2018 U6 - https://doi.org/10.1016/j.cemconres.2018.04.009 SN - 0008-8846 VL - 109 SP - 54 EP - 63 PB - Elsevier Ltd. AN - OPUS4-44722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Greiser, Sebastian A1 - Jäger, Christian A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten T1 - Investigations on one-part geopolymers synthesized from different silica sources N2 - One-part geopolymers, synthesized from three different silica sources and sodium aluminate, were investigated regarding their microstructure and the evolution of their compressive strength on curing at slightly elevated temperatures. The effect of thermal treatment was studied up to 1000 °C and for the investigation of the chemical durability specific samples were treated with sulfuric acid (H2SO4, pH = 1). Depending on the silica feedstock, different degrees of reaction were observed. One of the silicas had a significantly higher reactivity. For two of the silicas, significant amounts of zeolites occurred as reaction products besides geopolymeric gel, whereas the more reactive silica source lead to the formation of a rather fully condensed geopolymeric network. The composites indicated promising behavior on heating in so far as no distinct shrinkage step occurred in the temperature range of dehydration. Up to 400 °C the residual strength of those mixes increased. Above 800 °C the samples underwent new phase formation. After exposure to sulfuric acid (pH 1; 70 d) specimens showed a residual compressive strength of about 77 % of the reference, indicating high acid resistance. T2 - 6th International Conference on Non-Traditional Cement & Concrete CY - Brno, Czech Republic DA - 19.06.2017 KW - Geopolymers KW - Zeolites KW - Thermal properties KW - Acid resistance KW - Chemical durability PY - 2017 SN - 978-80-214-5507-8 SP - 299 EP - 306 AN - OPUS4-40774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -