TY - JOUR A1 - Stajanca, Pavol A1 - Mihai, L. A1 - Sporea, D. A1 - Negut, D. A1 - Sturm, Heinz A1 - Schukar, Marcus A1 - Krebber, Katerina T1 - Effects of gamma radiation on perfluorinated polymer optical fibers JF - Optical Materials N2 - The paper presents the first complex study of Gamma radiation effects on a low-loss perfluorinated polymer optical fiber (PF-POF) based on Cytop® polymer. Influence of gamma radiation on fiber’s optical, mechanical and climatic performance is investigated. The radiation-induced attenuation (RIA) in the visible and near-infrared region (0.4 μm-1.7 mm) is measured and its origins are discussed. Besides attenuation increase, radiation is also shown to decrease the thermal degradation stability of the fiber and to increase its susceptibility to water. With regard to complex fiber transmission performance upon irradiation, the optimal operation wavelength region of PF-POF-based systems intended for use in Radiation environments is determined to be around 1.1 μm. On the other hand, the investigated fiber holds potential for low-cost RIA-based optical fiber dosimetry applications with sensitivity as high as 260 dBm⁻¹/kGy in the visible region. KW - Perfluorinated polymer optical fibers KW - Cytop KW - Gamma radiation KW - Radiation-induced attenuation PY - 2016 DO - https://doi.org/10.1016/j.optmat.2016.05.027 SN - 0925-3467 VL - 58 SP - 226 EP - 233 PB - Elsevier AN - OPUS4-36462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Lorenz, Edelgard A1 - Weimann, Christiane A1 - Sturm, Heinz A1 - Karimov, I. A1 - Ettl, J. A1 - Meier, R. A1 - Wohlgemuth, W. A. A1 - Berger, H. A1 - Wildgruber, M. T1 - Mechanic and surface properties of central-venous port catheters after removal: A comparison of polyurethane and Silicon rubber materials JF - Journal of the Mechanical Behavior of Biomedical Materials N2 - Central venous port devices made of two different polymeric materials, thermoplastic polyurethane (TPU)and silicone rubber (SiR), were compared due their material properties. Both naïve catheters as well as catheters after removal from patients were investigated. In lab experiments the influence of various chemo-therapeutic solutions on material properties was investigated, where as the samples after removal were compared according to the implanted time inpatient. The macroscopic,mechanical performance was assessed with dynamic, specially adapted tests for elasticity. The degradation status of the materials was determined with common tools of polymer characterisation, such as infrared spectroscopy, molecular weight measurements and various methods of thermal analysis. The surface morphology was an alysed using scanning electron microscopy. A correlation between material properties and clinical performance was proposed. The surface morphology and chemical composition of the polyurethane catheter materials can potentially result in increased susceptibility of the catheter to bloodstream infections and thrombotic complications. The higher mechanic failure,especially with increasing implantation time of the silicone catheters is related to the lower mechanical performance compared to the polyurethane material as well as loss of barium sulphate filler particles near the surface of the catheter. This results in preformed microscopic notches, which act as predetermined sites of fracture. KW - Thermoplastic polyurethane (TPU) KW - Silicone rubber (SiR) KW - Catheters KW - Central venous access port KW - Complication KW - Structure propertyrelationship KW - Mechanical testing PY - 2016 DO - https://doi.org/10.1016/j.jmbbm.2016.08.002 SN - 1751-6161 SN - 1878-0180 VL - 64 SP - 281 EP - 291 PB - Elsevier Ltd. AN - OPUS4-37178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz T1 - Friction-induced explosive reactions N2 - The motivation to examine the influence of friction on surfaces of energetic materials (EM) has diverse backgrounds. On the one hand the very old hot spot theory predicts, that the size of such hot spot could be in the range of a molecule. The initiation of an EM could start by mechanical excitation, i.e. friction, and continues driven by an exothermal chemical reaction. Following such phenomena on the molecular scale with an imaging method such as AFM should enable us to separate several steps of ignition, if there are any. The experiments showed that HMX mainly undergoes a plastic deformation without further consequences. TNP however showed self healing in the wear track after scratching and simultaneously the destruction of a crystal edge outside the wear track. Additionally nanoparticles appear, tribologists call this "third body formation", which are proven to have a different chemical composition as the original TNP. The self healing effect on the surface is verified with experiments on self diffusion of TNP molecules to and fro the free edges of the crystal. The conclusion is that the formation of a hot spot can be shown to consist of several subsequent steps, separated temporally and locally. The goal to excite the thermal decomposition of a whole TNP crystal (nanoexplosion) was yet not reached due to unfavourable conditions related to thermal conductivity and build-up of pressure. T2 - Role of Third Bodies in Tribology, Colloquium of 5.1 CY - BAM, Berlin, Germany DA - 09.06.2016 KW - AFM KW - Energetic material KW - Hot spot KW - Friction PY - 2016 AN - OPUS4-36433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhiem, S. A1 - Barthel, Anne-Kathrin A1 - Meyer-Plath, A. A1 - Hennig, M. P. A1 - Wachtendorf, Volker A1 - Sturm, Heinz A1 - Schäffer, A. A1 - Maes, H. M. T1 - Release of 14C-labelled carbon nanotubes from polycarbonate composites JF - Environmental Pollution N2 - Waste disposal of carbon nanotube (CNT) containing products is expected to be the most important pathway for release of CNTs into the environment. In the present work, the use of radiolabelled CNTs (14C-CNT) for polycarbonate polymer nanocomposites with 1 wt% 14C-CNT content allowed for the first time to quantify and differentiate the CNT release according to the type of impact along the materials' ageing history. After an initial exposure of the nanocomposite by solar-like irradiation, further environmental impacts were applied to composite material. They aimed at mimicking disposal site conditions that may induce further ageing effects and CNT release. This study included shaking in water, rapid temperature changes, soaking in humic acid solution as well as waste water effluent, and, finally, gentle mechanical abrasion. All ageing impacts were applied sequentially, both on pristine (control) and on solar-irradiated nanocomposites. All experiments were accompanied by absolute quantification of radioactive release as well as chemical and morphological analyses of the nanocomposite surfaces using infra-red (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The morphological analysis showed that spectral irradiation can uncover CNT networks on the outer nanocomposite surface layers by polymer degradation. After having subjected the solar-irradiated nanocomposite to all studied disposal site effect, the total radioactive release was quantified to amount to 64 mg CNT/m2, whereas only 0.8 mg CNT/m2 were found for the un-irradiated control sample. Solar degradation of polymers was thus found to significantly increase the propensity of the studied polymer nanocomposites to release CNTs during ageing effects at the product's end-of-life typical for disposal sites. KW - Weathering KW - Carbon nanotubes KW - Nanocomposites KW - Release KW - Quantification PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S0269749116303748 DO - https://doi.org/10.1016/j.envpol.2016.04.098 SN - 0269-7491 VL - 215 IS - August SP - 356 EP - 365 PB - Elsevier Ltd. CY - Paris AN - OPUS4-36899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bresch, Harald A1 - Lexow, Jürgen A1 - Sturm, Heinz A1 - Packroff, R. A1 - Völker, D. A1 - Mutz, D. A1 - Bosse, H. A1 - Gebel, T. A1 - Pipke, R. A1 - Marx, R. A1 - Plitzko, S. A1 - Niesmann, K. A1 - Meyer-Plath, A. A1 - Burgdorf, T. A1 - Engel, N. A1 - Epp, A. A1 - Haase, A. A1 - Herzberg, F. A1 - Laux, P. A1 - Oberemm, A. A1 - Sommer, Y. A1 - Tentschert, J. A1 - Ulm, G. A1 - Schwirn, K. A1 - Liesegang, C. T1 - Nanomaterialien und andere innovative Werkstoffe: anwendungssicher und umweltverträglich T1 - Nanomaterials and other advanced materials: application safety and environmental compatibility N2 - Mit einer langfristigen Forschungsstrategie begleiten die für die Sicherheit von Mensch und Umwelt zuständigen Bundesoberbehörden (Umweltbundesamt, Bundesinstitut für Risikobe-wertung, Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, Bundesanstalt für Materialfor-schung und -prüfung und Physikalisch-Technische Bundesanstalt) die rasch voranschreiten-de Entwicklung neuer Materialien unter den Gesichtspunkten des Arbeits-, Verbraucher- und Umweltschutzes. Die Strategie steht daher in enger Verbindung zu den öffentlichen Förder-programmen für Nanomaterialien und andere innovative Werkstoffe, z. B. des BMBF („Vom Material zur Innovation“) und der EU („Horizon 2020“). Die Forschungsstrategie baut auf den bisherigen Ergebnissen der 2008 begonnenen und 2013 erstmals bilanzierten gemeinsamen Forschungsstrategie der Bundesoberbehörden „Nanotechnologie - Gesundheits- und Umweltrisiken von Nanomaterialien"1 auf und erweitert den Blickwinkel auch auf andere Materialinnovationen, bei denen vergleichbare Risiken für Mensch und Umwelt bestehen oder abgeklärt werden müssen. Darüber hinaus greift sie die Idee „anwendungssichere chemische Produkte“2 aus der Initiative „Neue Qualität der Arbeit“ (INQA) des Bundesministeriums für Arbeit und Soziales (BMAS) und das Konzept der nach-haltigen Chemie3 auf, das vom Bundesministerium für Umwelt, Naturschutz, Bau und Reak-torsicherheit (BMUB) unterstützt wird. Durch eine anwendungssichere und umweltverträgli-che Gestaltung innovativer Materialien und ihrer Folgeprodukte sollen nicht akzeptable Risi-ken für Mensch und Umwelt von Anfang an weitgehend ausgeschlossen werden. Dies kann erreicht werden durch 1. die Verwendung sicherer Materialien ohne Gefahreneigenschaften für Mensch und Umwelt (direkte Anwendungssicherheit) oder 2. eine Produktgestaltung, die über den gesamten Lebenszyklus emissionsarm und umweltverträglich ist (integrierte Anwendungssicherheit) oder 3. eine Unterstützung des Anwenders (product stewardship) durch den Hersteller bei technischen, organisatorischen und persönlichen Schutzmaßnahmen zur sicheren Verwendung und Entsorgung des Produktes (unterstützte Anwendungssicherheit). Die Fortschreibung der Forschungsstrategie soll als Bestandteil des Nanoaktionsplans 2020 der Bundesregierung Beiträge der Ressortforschung zu folgenden Schwerpunkten leisten: • Charakterisierung und Bewertung der Risiken von Materialinnovationen • Unterstützung von Forschungseinrichtungen und Unternehmen • Fortschreiben von Rechtsvorschriften und Praxisempfehlungen 1 http://www.baua.de/nn_47716/de/Themen-von-A-Z/Gefahrstoffe/Nanotechnologie/pdf/Forschungsstrategie.pdf 2 http://www.baua.de/de/Themen-von-A-Z/Gefahrstoffe/Nachhaltige-Chemie/Nachhaltige-Chemie.html 3 http://www.umweltbundesamt.de/themen/chemikalien/chemikalien-management/nachhaltige-chemie 2 • Gesellschaftliche Akzeptanz Die Forschungsstrategie soll mit Projekten und anderen forschungsnahen Aktivitäten umge-setzt werden. Dies umfasst die eigene Forschung der Häuser, die extramurale Ausschrei-bung und Vergabe von Forschungsdienstleistungen sowie die Beteiligung an vorwiegend öffentlich geförderten Drittmittelprojekten. Hinzu kommen Aktivitäten im Rahmen der Politik-beratung und der hoheitlichen Aufgaben. Mit inter- und transdisziplinären Ansätzen soll die Risiko- und Sicherheitsforschung enger mit der Innovationsforschung und Materialentwick-lung verknüpft werden. Die Forschungsstrategie ist aufgrund der raschen Entwicklungen auf diesem Gebiet für den Zeitraum bis 2020 angelegt. Die Forschungsziele adressieren die in diesem Zeitraum voraussichtlich umsetzbaren Forschungsansätze. Die Forschungsstrategie wird durch einen Arbeitskreis begleitet und spätestens mit Ablauf des Nanoaktionsplans 2020 evaluiert und angepasst. KW - Forschungsstrategie KW - Bundesoberbehörden KW - Nanomaterialien KW - Innovative Werkstoffe KW - Nano PY - 2016 UR - https://www.bam.de/_SharedDocs/DE/Downloads/nano-forschungsstrategie-2016.pdf?__blob=publicationFile&v=3 UR - http://www.baua.de/de/Themen-von-A-Z/Gefahrstoffe/Nanotechnologie/pdf/Fortschreibung-Forschungsstrategie.pdf?__blob=publicationFile&v=3 UR - http://www.bmub.bund.de/fileadmin/Daten_BMU/Download_PDF/Nanotechnologie/forschungsstrategie_bundesoberbehoerden_de_bf.pdf SP - 1 EP - 28 PB - UBA/BfR/BAuA/BAM/PTB CY - Berlin AN - OPUS4-37526 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Uhlig, F. A1 - Solomun, Tihomir A1 - Smiatek, J. A1 - Sturm, Heinz T1 - Combined influence of ectoine and salt: spectroscopic and numerical evidence for compensating effects of aqueous solutions JF - Physical Chemistry Chemical Physics N2 - Ectoine is an important osmolyte, which allows microorganisms to survive in extreme environmental salinity. The hygroscopic effects of ectoine in pure water can be explained by a strong water binding behavior whereas a study on the effects of ectoine in salty solution is yet missing. We provide Raman spectroscopic evidence that the influence of ectoine and NaCl are opposing and completely independent of each other. The effect can be explained by the formation of strongly hydrogen-bonded water molecules around ectoine which compensate the influence of the salt on the water dynamics. The mechanism is corroborated by first principles calculations and broadens our understanding of zwitterionic osmolytes in aqueous solution. Our findings allow us to provide a possible explanation for the relatively high osmolyte concentrations in halotolerant bacteria. KW - Ectoine KW - Aqueous solution KW - Biological structure KW - Organic osmolytes KW - Raman spectroscopy KW - Water structure PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-376761 UR - http://pubs.rsc.org/en/content/articlelanding/2016/cp/c6cp05417j#!divAbstract DO - https://doi.org/10.1039/c6cp05417j VL - 18 IS - 41 SP - 28398 EP - 28402 PB - Royal Society of Chemistry CY - UK AN - OPUS4-37676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fankhänel, J. A1 - Silbernagl, Dorothee A1 - Ghasem Zadeh Khorasani, Media A1 - Daum, B. A1 - Kempe, A. A1 - Sturm, Heinz A1 - Rolfes, R. T1 - Mechanical properties of Boehmite evaluated by Atomic Force Microscopy experiments and Molecular Dynamic Finite Element simulations JF - Journal of Nanomaterials N2 - Boehmite nanoparticles show great potential in improving mechanical properties of fiber reinforced polymers. In order to predict the properties of nanocomposites, knowledge about the material parameters of the constituent phases, including the boehmite particles, is crucial. In this study, the mechanical behavior of boehmite is investigated using Atomic Force Microscopy (AFM) experiments and Molecular Dynamic Finite Element Method (MDFEM) simulations. Young’s modulus of the perfect crystalline boehmite nanoparticles is derived from numerical AFM simulations. Results of AFM experiments on boehmite nanoparticles deviate significantly. Possible causes are identified by experiments on complementary types of boehmite, that is, geological and hydrothermally synthesized samples, and further simulations of imperfect crystals and combined boehmite/epoxy models. Under certain circumstances, the mechanical behavior of boehmite was found to be dominated by inelastic effects that are discussed in detail in the present work.The studies are substantiated with accompanying X-ray diffraction and Raman experiments. KW - AFM KW - MDFEM KW - Nanocomposite KW - Epoxy KW - X-ray diffraction KW - Raman spectroscopy KW - Young’s modulus KW - Slippage of weakly linked layers PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-384230 UR - https://www.hindawi.com/journals/jnm/2016/5017213/#B26 DO - https://doi.org/10.1155/2016/5017213 VL - 2016 IS - Article ID 5017213 SP - 1 EP - 13 PB - Hindawi Publishing Corporation AN - OPUS4-38423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröter, Maria-Astrid A1 - Ritter, M. A1 - Holschneider, M. A1 - Sturm, Heinz T1 - Enhanced DySEM imaging of cantilever motion using artificial structures patterned by focused ion beam techniques JF - Journal of Micromechanics and Microengineering N2 - We use a dynamic scanning electron microscope (DySEM) to map the spatial distribution of the vibration of a cantilever beam. The DySEM measurements are based on variations of the local secondary electron signal within the imaging electron beam diameter during an oscillation period of the cantilever. For this reason, the surface of a cantilever without topography or material variation does not allow any conclusions about the spatial distribution of vibration due to a lack of dynamic contrast. In order to overcome this limitation, artificial structures were added at defined positions on the cantilever surface using focused ion beam lithography patterning. The DySEM signal of such high-contrast structures is strongly improved, hence information about the surface vibration becomes accessible. Simulations of images of the vibrating cantilever have also been performed. The results of the simulation are in good agreement with the experimental images. KW - FIB patterning KW - Structured cantilever KW - AFM KW - Modal analysis KW - DySEM PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-354510 DO - https://doi.org/doi:10.1088/0960-1317/26/3/035010 VL - 26 IS - 3 SP - 035010-1 EP - 035010-7 AN - OPUS4-35451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hartmann, S A1 - Sturm, Heinz A1 - Blaudeck, T A1 - Hoelck, O A1 - Hermann, S A1 - Schulz, SE A1 - Wunderle, B. T1 - Experimental and computational studies on the role of surface functional groups in the mechanical behavior of interfaces between single-walled carbon nanotubes and metals JF - Journal of materials science N2 - To study the mechanical interface behavior of single-walled carbon nanotubes (CNTs) embedded in a noble metal, we performed CNT-metal pull-out tests with in situ scanning electron microscope experiments. Molecular dynamics (MD) simulations were conducted to predict force-displacement data during pull-out, providing critical forces for failure of the system. In MD simulations, we focused on the influence of carboxylic surface functional groups (SFGs) covalently linked to the CNT. Experimentally obtained maximum forces between 10 and 102 nN in palladium and gold matrices and simulated achievable pulling forces agree very well. The dominant failure mode in the experiment is CNT rupture, although several pull-out failures were also observed. We explain the huge scatter of experimental values with varying embedding length and SFG surface density. From simulation, we found that SFGs act as small anchors in the metal matrix and significantly enhance the maximum forces. This interface reinforcement can lead to tensile stresses sufficiently high to initiate CNT rupture. To qualify the existence of carboxylic SFGs on our CNT material, we performed analytical investigation by means of fluorescence labeling of surface species and discuss the results. With this contribution, we focus on a synergy between computational and experimental approaches involving MD simulations, nano scale testing, and analytics (1) to predict to a good degree of accuracy maximum pull-out forces of single-walled CNTs embedded in a noble metal matrix and (2) to provide valuable input to understand the underlying mechanisms of failure with focus on SFGs. This is of fundamental interest for the design of future mechanical sensors incorporating piezoresistive single-walled CNTs as the sensing element. KW - Oxygen-containing functionalities KW - Molecular-dynamics KW - Structural characterization KW - Reinforced composites KW - Raman spectroscopy KW - Shear strength KW - Polymer matrix KW - Pull-out KW - Simulation KW - Purification PY - 2016 DO - https://doi.org/10.1007/s10853-015-9142-6 SN - 0022-2461 SN - 1573-4803 VL - 51 IS - 3 SP - 1217 EP - 1233 AN - OPUS4-35795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer-Plath, Asmus A1 - Beckert, F A1 - Tölle, FJ A1 - Sturm, Heinz A1 - Mülhaupt, R T1 - Stable aqueous dispersions of functionalized multi-layer graphene by pulsed underwater plasma exfoliation of graphite JF - Journal of physics D - Applied physics N2 - A process was developed for graphite particle exfoliation in water to stably dispersed multi-layer graphene. It uses electrohydraulic shockwaves and the functionalizing effect of solution plasma discharges in water. The discharges were excited by 100 ns high voltage pulsing of graphite particle chains that bridge an electrode gap. The underwater discharges allow simultaneous exfoliation and chemical functionalization of graphite particles to partially oxidized multi-layer graphene. Exfoliation is caused by shockwaves that result from rapid evaporation of carbon and water to plasma-excited gas species. Depending on discharge energy and locus of ignition, the shockwaves cause stirring, erosion, exfoliation and/or expansion of graphite flakes. The process was optimized to produce long-term stable aqueous dispersions of multi-layer graphene from graphite in a single process step without requiring addition of intercalants, surfactants, binders or special solvents. A setup was developed that allows continuous production of aqueous dispersions of flake size-selected multi-layer graphenes. Due to the well-preserved sp(2)-carbon structure, thin films made from the dispersed graphene exhibited high electrical conductivity. Underwater plasma discharge processing exhibits high innovation potential for morphological and chemical modifications of carbonaceous materials and surfaces, especially for the generation of stable dispersions of two-dimensional, layered materials. KW - Exfoliation KW - Graphene KW - Aqueous dispersion KW - Solution plasma KW - Functionalization KW - Electrohydraulic effect KW - Shear exfoliation KW - Oxide-films KW - Water PY - 2016 DO - https://doi.org/10.1088/0022-3727/49/4/045301 SN - 0022-3727 VL - 49 IS - 4 SP - 045301-1 EP - 045301-11 AN - OPUS4-35796 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -