TY - CONF A1 - Sturm, Heinz A1 - Geuss, Markus T1 - Methods for Simultaneous Measurements of Topography and Local Electrical Properties: Conductivity, Capacity, Surface Charge and Inverse Piezoelectricity T2 - Workshop: Rastersondenmikroskopie in Forschung und Industrie an der GH Wuppertal CY - Wuppertal, Germany DA - 1999-03-11 PY - 1999 AN - OPUS4-6496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz A1 - Heyde, M. A1 - Rademann, K. T1 - Recipes for the Calibration of Piezos with a Fibre Optical Displacement Sensor for Scanning Probe Microscopy Usage T2 - 10th International Symposium on Electrets (ISE 10) CY - Delphi, Greece DA - 1999-09-22 PY - 1999 AN - OPUS4-6501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz T1 - Experimente mit Polymeren: Statische und dynamische Indentation, Reibung, Referenzproben der BAM T2 - Milestone-Meeting BMBF-Projekt "Entwicklung und Optimierung von Prüfmethoden zur quantitativen Bestimmung elestischer Eigenschaften in nanoskaligen Dimensionen mit Rastersondenmikroskopie" in der BASF CY - Ludwigshafen am Rhein, Germany DA - 2003-12-11 PY - 2003 AN - OPUS4-4096 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz T1 - Rasterkraft- und elektrische Leitfähigkeitsmikroskopie auf kohlefaserverstärkten Polymersystemen T2 - Workshop "Oberflächencharakterisierung mit Rastersondenmikroskopie" an der Humboldt-Universität CY - Berlin, Germany DA - 1994-09-29 PY - 1994 AN - OPUS4-6374 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz A1 - Schulz, Eckhard T1 - Rasterkraftmikroskopie mit Leitfähigkeitskontrast zur Oberflächenanalyse von Carbonfaser-Compositen T2 - Tagung "Funktionalisierte dünne organische Schichten und Grenzflächen" CY - Potsdam, Germany DA - 1995-05-22 PY - 1995 AN - OPUS4-6384 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz A1 - Schulz, Eckhard T1 - Leitfähigkeitskontrast auf Kohlefaseroberflächen und atomare Auslösung auf HOPG T2 - 6th International Workshop "Frontiers in SPM" CY - Saarbrücken, Germany DA - 1995-09-20 PY - 1995 AN - OPUS4-6387 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz A1 - Bovtun, V. A1 - Schulz, Eckhard T1 - Messungen lokaler elektrischer Eigenschaften an keramischen Dielektrika T2 - 29. Kolloquium des Arbeitskreises für Elektronenmikroskopische Direktabbildung und Analyse von Oberflächen (EDO) der Deutschen Gesellschaft für Elektronenmikroskopie e.V. CY - Münster, Germany DA - 1996-10-10 PY - 1996 AN - OPUS4-6393 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz A1 - Heyde, M. A1 - Munz, Martin A1 - Rademann, K. T1 - Recipes for the Calibration of Piezos with a cheap and easy-to-use Fibre Optical Displacement Sensor T2 - 2nd German Brazilian Workshop on Applied Surface Science CY - Templin, Germany DA - 1998-09-21 PY - 1998 AN - OPUS4-6465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz T1 - Scanning Force Microscopy (SFM) with additional mechanical and electrical materials contrasts T2 - Seminar of the Department of Materials and Interfaces, Weizmann Institute of Science CY - Rehovot, Israel DA - 1997-02-16 PY - 1997 AN - OPUS4-6412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz T1 - Studies of wear on materials by SPM T2 - Workshop em Microscopiy de Forca Atomica e tecnicas correlatas CY - Rio de Janeiro, Brazil DA - 1997-10-14 PY - 1997 AN - OPUS4-6423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tavasolyzadeh, Zeynab A1 - Tang, Peng A1 - Hahn, Marc Benjamin A1 - Hweidi, Gada A1 - Nordholt, Niclas A1 - Haag, Rainer A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - 2D and 3D Micropatterning of Mussel‐Inspired Functional Materials by Direct Laser Writing N2 - AbstractThis work addresses the critical need for multifunctional materials and substrate‐independent high‐precision surface modification techniques that are essential for advancing microdevices and sensing elements. To overcome existing limitations, the versatility of mussel‐inspired materials (MIMs) is combined with state‐of‐the‐art multiphoton direct laser writing (DLW) microfabrication. In this way, 2D and 3D MIM microstructures of complex designs are demonstrated with sub‐micron to micron resolution and extensive post‐functionalization capabilities. This study includes polydopamine (PDA), mussel‐inspired linear, and dendritic polyglycerols (MI‐lPG and MI‐dPG), allowing their direct microstructure on the substrate of choice with the option to tailor the patterned topography and morphology in a controllable manner. The functionality potential of MIMs is demonstrated by successfully immobilizing and detecting single‐stranded DNA on MIM micropattern and nanoarray surfaces. In addition, easy modification of MIM microstructure with silver nanoparticles without the need of any reducing agent is shown. The methodology developed here enables the integration of MIMs in advanced applications where precise surface functionalization is essential. KW - Direct laser writing KW - Mussel-inspired materials KW - Polyglycerol KW - Polydopamine KW - Micropatterning PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588778 DO - https://doi.org/10.1002/smll.202309394 SN - 1613-6829 SP - 1 EP - 12 PB - Wiley-VCH CY - Weinheim AN - OPUS4-58877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, Sven A1 - Pauw, Brian Richard A1 - Weimann, Christiane A1 - Sturm, Heinz T1 - First of its kind: A test artifact for direct laser writing N2 - With femtosecond-laser direct writing (fs-LDW) maturing in all aspects as a manufacturing technology, a toolset for quality assurance must be developed. In this work we introduce a first of its kind test artifact. Test artifacts are standardized 3D models with specific geometric features to evaluate the performance of writing parameters. Test artifacts are already common in other 3D additive manufacturing technologies e.g. selective laser melting. The test artifact introduced in this work was developed in particular to accommodate the high geometrical resolution of fs-LDW structures and the limited possibilities to examine the resulting structure. Geometric accuracy, surface adhesion as well as confocal Raman spectroscopy results were considered when evaluating the design of the test artifact. We will explain the individual features and design considerations of our fs-LDW test artifact. The difference between two slicers, Cura and 3DPoli, and the implications on measured feature sizes and the general shape is quantified. The measured geometries are used to derive a general design guide for a specific combination of photoresists, laser power and scanning speed and to analyze the geometric accuracy of a structure produced using these guidelines. The shown test artifact is publicly available as STL file on GitHub (https://github.com/BAMresearch/2PP-TestArtifact) and in the supplement. KW - Laser direct writing KW - Multi photon lithography KW - Reference material KW - Raman spectroscopy KW - Confocal raman imaging KW - Slicers KW - Open data on zenodo PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580951 DO - https://doi.org/10.1088/1361-6501/acc47a VL - 34 IS - 7 SP - 1 EP - 14 PB - IOP Science AN - OPUS4-58095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Platz, D. A1 - Sturm, Heinz T1 - Insights into Nano-Scale Physical and Mechanical Properties of Epoxy/Boehmite Nanocomposite Using Different AFM Modes N2 - Understanding the interaction between nanoparticles and the matrix and the properties of interphase is crucial to predict the macroscopic properties of a nanocomposite system. Here, we investigate the interaction between boehmite nanoparticles (BNPs) and epoxy using different atomic force microscopy (AFM) approaches. We demonstrate benefits of using multifrequency intermodulation AFM (ImAFM) to obtain information about conservative, dissipative and van der Waals tip-surface forces and probing local properties of nanoparticles, matrix and the interphase. We utilize scanning kelvin probe microscopy (SKPM) to probe surface potential as a tool to visualize material contrast with a physical parameter, which is independent from the mechanics of the surface. Combining the information from ImAFM stiffness and SKPM surface potential results in a precise characterization of interfacial region, demonstrating that the interphase is softer than epoxy and boehmite nanoparticles. Further, we investigated the effect of boehmite nanoparticles on the bulk properties of epoxy matrix. ImAFM stiffness maps revealed the significant stiffening effect of boehmite nanoparticles on anhydride-cured epoxy matrix. The energy Dissipation of epoxy Matrix locally measured by ImAFM shows a considerable increase compared to that of neat epoxy. These measurements suggest a substantial alteration of epoxy structure induced by the presence of boehmite. KW - Nanomechanics KW - Intermodulation-AFM KW - Interphase KW - Boehmite KW - Epoxy PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-476040 DO - https://doi.org/10.3390/polym11020235 SN - 2073-4360 VL - 11 IS - 2 SP - 235, 1 EP - 19 PB - MDPI AN - OPUS4-47604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Hodoroaba, Vasile-Dan A1 - Sturm, Heinz T1 - The effect of boehmite nanoparticles (gamma‐AlOOH) on nanomechanical and thermomechanical properties correlated to crosslinking density of epoxy N2 - We show that complex physical and chemical interactions between boehmite nanoparticles and epoxy drastically affect matrix properties, which in the future will provide tuning of material properties for further optimization in applications from automotive to aerospace. We utilize intermodulation atomic force microscopy (ImAFM) for probing local stiffness of both particles and polymer matrix. Stiff particles are expected to increase total stiffness of nanocomposites and the stiffness of polymer should remain unchanged. However, ImAFM revealed that stiffness of matrix in epoxy/boehmite nanocomposite is significantly higher than unfilled epoxy. The stiffening effect of the boehmite on epoxy also depends on the particle concentration. To understand the mechanism behind property alteration induced by boehmite nanoparticles, network architecture is investigated using dynamic mechanical thermal analysis (DMTA). It was revealed that although with 15 wt% boehmite nanoparticles the modulus at glassy state increases, crosslinking density of epoxy for this composition is drastically low. KW - Crosslinking density KW - Epoxy KW - Intermodulation KW - Atomic force microscopy KW - Nanomechanical properties KW - Boehmite nanoparticles PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-476050 DO - https://doi.org/10.1016/j.polymer.2018.12.054 SN - 0032-3861 SN - 1873-2291 VL - 164 SP - 174 EP - 182 PB - Elsevier AN - OPUS4-47605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kirner, Sabrina V. A1 - Slachciak, Nadine A1 - Elert, Anna Maria A1 - Griepentrog, Michael A1 - Fischer, Daniel A1 - Hertwig, Andreas A1 - Sahre, Mario A1 - Dörfel, Ilona A1 - Sturm, Heinz A1 - Pentzien, Simone A1 - Koter, Robert A1 - Spaltmann, Dirk A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Tribological performance of titanium samples oxidized by fs-laser radiation, thermal heating, or electrochemical anodization N2 - Commercial grade-1 titanium samples (Ti, 99.6%) were treated using three alternative methods, (i) femtosecond laser processing, (ii) thermal heat treatment, and (iii) electrochemical anodization, respectively, resulting in the formation of differently conditioned superficial titanium oxide layers. The laser processing (i) was carried out by a Ti:sapphire laser (pulse duration 30 fs, central wavelength 790 nm, pulse repetition rate 1 kHz) in a regime of generating laser-induced periodic surface structures (LIPSS). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning setup for the processing of several square-millimeters large surface areas covered homogeneously by these nanostructures. The differently oxidized titanium surfaces were characterized by optical microscopy, micro Raman spectroscopy, variable angle spectroscopic ellipsometry, and instrumented indentation testing. The tribological performance was characterized in the regime of mixed friction by reciprocating sliding tests against a sphere of hardened steel in fully formulated engine oil as lubricant. The specific tribological performance of the differently treated surfaces is discussed with respect to possible physical and chemical mechanisms. KW - Femtosecond laser KW - Titanium KW - Oxidation KW - Friction PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-445609 DO - https://doi.org/10.1007/s00339-018-1745-8 SN - 0947-8396 SN - 1432-0630 VL - 124 IS - 4 SP - 326, 1 EP - 10 PB - Springer-Verlag AN - OPUS4-44560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröter, Maria-Astrid A1 - Meyer, Susann A1 - Hahn, Marc Benjamin A1 - Solomun, Tihomir A1 - Sturm, Heinz A1 - Kunte, Hans-Jörg T1 - Ectoine protects DNA from damage by ionizing radiation N2 - Ectoine plays an important role in protecting biomolecules and entire cells against environmental stressors such as salinity, freezing, drying and high temperatures. Recent studies revealed that ectoine also provides effective protection for human skin cells from damage caused by UV-A radiation. These protective properties make ectoine a valuable compound and it is applied as an active ingredient in numerous pharmaceutical devices and cosmetics. Interestingly, the underlying mechanism resulting in protecting cells from radiation is not yet fully understood. Here we present a study on ectoine and its protective influence on DNA during electron irradiation. Applying gel electrophoresis and atomic force microscopy, we demonstrate for the first time that ectoine prevents DNA strand breaks caused by ionizing electron radiation. The results presented here point to future applications of ectoine for instance in cancer radiation therapy. KW - Plasmid DNA pUC19 KW - Electron irradiation 30 [kV] KW - Effective irradiation dose 0.2-16 [Gy] KW - Gel electrophoresis KW - AFM intermittent contact KW - Radioprotector ectoine KW - Compatible solute PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-428287 DO - https://doi.org/10.1038/s41598-017-15512-4 SN - 2045-2322 VL - 7 IS - 1 SP - 15272, 1 EP - 15272, 7 PB - Nature AN - OPUS4-42828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stajanca, Pavol A1 - Mihai, L. A1 - Sporea, D. A1 - Negut, D. A1 - Sturm, Heinz A1 - Schukar, Marcus A1 - Krebber, Katerina ED - Webb, D. J. ED - Scully, P. ED - Sugden, K. T1 - Impacts of gamma irradiation on cytop plastic optical fibres N2 - Impact of gamma radiation on transmission of a commercial Cytop polymer optical fibre (Lucina, Asahi Glass Company) is investigated. Spectral dependence of radiation induced attenuation in the investigated fibre is measured in the VIS-NIR spectral region. Besides attenuation increase, radiation is found to increase fibre susceptibility to water as well. While pristine Cytop fibre is rather humidity insensitive, strong humidity related absorption in the NIR region is observed after fibre irradiation. Selective irradiation of separate fibre sections is proposed as a way of fibre humidity sensitization and quasi-distributed water detection is demonstrated using optical time domain reflectometry at 1310 nm. T2 - POF 2016: 25th International Conference on Plastic Optical Fibres CY - Birmingham, UK DA - 13.09.2016 KW - Polymer optical fibers KW - Cytop KW - Gamma radiation PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-403216 SN - 9781854494085 SP - 114 EP - 117 CY - Birmingham AN - OPUS4-40321 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna Christiane A1 - Pauw, Brian Richard A1 - Sturm, Heinz A1 - Günster, Jens T1 - First time additively manufactured advanced ceramics by using two-photon polymerization for powder processing N2 - Methods and materials are presented here, which enable the manufacturing of fine structures using a 3D-printing method known as two-photon polymerization (2PP). As traditional photolithography methods for structuring ceramic slurries do not function with 2PP, due to light scattering on ceramic particles, a novel water-based photoresist with high ceramic loading of extremely well dispersed ceramic nano particles was developed. This photoresist is basically a ceramic slurry containing a photocurable agent and a photoinitiator to be crosslinkable with the 780 nm wavelength femtosecond laser light source of the 2PP machine. It is demonstrated that it is possible to gain a highly transparent and low viscous slurry suitable for 2PP processing. This work shows the development of the slurry, first printing results and the post-printing processes required to form three dimensional ceramic microstructures consisting of alumina toughened zirconia (ATZ). KW - 3D-printing KW - Two-photon polymerization KW - 2PP KW - Ceramic nano particles KW - Slurry KW - Alumina toughened zirconia KW - ATZ KW - Additive manufacturing KW - SchwarzP cells KW - Nano-ceramic-additive-manufacturing photoresin KW - NanoCAM PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517441 DO - https://doi.org/10.1016/j.oceram.2020.100040 VL - 4 SP - 100040 PB - Elsevier Ltd. AN - OPUS4-51744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Elert, Anna Maria A1 - Chen, Yong-Cin A1 - Smales, Glen J. A1 - Topolniak, Ievgeniia A1 - Sturm, Heinz A1 - Schönhals, Andreas A1 - Szymoniak, Paulina T1 - Effects of the charge density of nanopapers based on carboxymethylated cellulose nanofibrils investigated by complementary techniques N2 - Cellulose nanofibrils (CNFs) with different charge densities were prepared and investigated by a combination of different complementary techniques sensitive to the structure and molecular dynamics of the system. The morphology of the materials was investigated by scanning electron microscopy (SEM) and X-ray scattering (SAXS/WAXS). The latter measurements were quantitatively analyzed yielding to molecular parameters in dependence of the charge density like the diameter of the fibrils, the distance between the fibrils, and the dimension of bundles of nanofibrils, including pores. The influence of water on the properties and the charge density is studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and broadband dielectric spectroscopy. The TGA measurements reveal two mass loss processes. The one at lower temperatures was related to the loss of water, and the second process at higher temperatures was related to the chemical decomposition. The resulting char yield could be correlated to the distance between the microfibrils. The DSC investigation for hydrated CNFs revealed three glass transitions due to the cellulose segments surrounded by water molecules in different states. In the second heating scan, only one broad glass transition is observed. The dielectric spectra reveal two relaxation processes. At low temperatures or higher frequencies, the β-relaxation is observed, which is assigned to localized fluctuation of the glycosidic linkage. At higher temperatures and lower frequencies, the α-relaxation takes places. This relaxation is due to cooperative fluctuations in the cellulose segments. Both processes were quantitatively analyzed. The obtained parameters such as the relaxation rates were related to both the morphological data, the charge density, and the content of water for the first time. KW - Cellulose nanofibrils PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600528 DO - https://doi.org/https://doi.org/10.1021/acsomega.4c00255 SN - 2470-1343 VL - 9 SP - 20152 EP - 20166 PB - ACS AN - OPUS4-60052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Tavasolyzadeh, Zeynab A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - Multiphoton lithography of interpenetrating polymer networks for tailored microstructure thermal and micromechanical properties N2 - Multiphoton lithography (MPL), an emerging truly 3D microfabrication technique, exhibits substantial potential in biomedical applications, including drug delivery and tissue engineering. Fabricated micro-objects are often expected to undergo shape morphing or bending of the entire structure or its parts. Furthermore, ensuring precise property tuning is detrimental to the realization of the functionality of MPL microstructures. Herein, novel MPL materials based on interpenetrating polymer networks (IPNs) are presented that effectively combine the advantages of acrylate and epoxy systems. IPNs with varying component ratios are investigated for their microfabrication performance and structural integrity with respect to thermal and micromechanical properties. A variety of high-resolution techniques is applied to comprehensively evaluate IPN properties at the bulk, micron, and segmental levels. This study shows that the MPL laser scanning velocity and power, photoinitiator content, and multi-step exposure can be used to tune the morphology and properties of the IPN. As a result, a library of 3D MPL IPN microstructures with high 3D structural stability and tailored thermal and micromechanical properties is achieved. New IPN microstructures with Young’s moduli of 3–4 MPa demonstrate high-to-fully elastic responses to deformations, making them promising for applications in morphable microsystems, soft micro-robotics, and cell engineering. KW - Interpenetrating polymer network KW - Multiphoton lithography KW - Atomic force microscopy KW - Intermodulation AFM KW - Fast scanning calorimetry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600593 DO - https://doi.org/10.1002/smll.202310580 SN - 1613-6810 SP - 1 EP - 12 PB - Wiley-VCH CY - Weinheim AN - OPUS4-60059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Solomun, Tihomir A1 - Wellhausen, Robert A1 - Herrmann, S A1 - Seitz, H A1 - Meyer, Susann A1 - Kunte, Hans-Jörg A1 - Zeman, J. A1 - Uhlig, F A1 - Smiatek, J A1 - Sturm, Heinz T1 - Influence of the Compatible Solute Ectoine on the Local Water Structure: Implications for the Binding of the Protein G5P to DNA N2 - Microorganisms accumulate molar concentrations of compatible solutes like ectoine to prevent proteins from denaturation. Direct structural or spectroscopic information on the mechanism and about the hydration shell around ectoine are scarce. We combined surface plasmon resonance (SPR), confocal Raman spectroscopy, molecular dynamics simulations, and density functional theory (DFT) calculations to study the local hydration shell around ectoine and its influence on the binding of a gene-S-protein (G5P) to a single-stranded DNA (dT(25)). Due to the very high hygroscopicity of ectoine, it was possible to analyze the highly stable hydration shell by confocal Raman spectroscopy. Corresponding molecular dynamics simulation results revealed a significant change of the water dielectric constant in the presence of a high molar ectoine concentration as compared to pure water. The SPR data showed that the amount of protein bound to DNA decreases in the presence of ectoine, and hence, the protein-DNA dissociation constant increases in a concentration-dependent manner. Concomitantly, the Raman spectra in terms of the amide I region revealed large changes in the protein secondary structure. Our results indicate that ectoine strongly affects the molecular recognition between the protein and the oligonudeotide, which has important consequences for osmotic regulation mechanisms. KW - Aqueous solution KW - Biological structure KW - Raman spectroscopy KW - Organic osmolytes KW - High throughput KW - Gene-5 protein KW - Amino acid KW - Water structure PY - 2015 DO - https://doi.org/10.1021/acs.jpcb.5b09506 SN - 1520-6106 SN - 1089-5647 SN - 1520-5207 VL - 119 IS - 49 SP - 15212 EP - 15220 AN - OPUS4-35800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fornacon-Wood, Christoph A1 - Stühler, Merlin R. A1 - Millanvois, Alexandre A1 - Steiner, Luca A1 - Weimann, Christiane A1 - Silbernagl, Dorothee A1 - Sturm, Heinz A1 - Paulus, Beate A1 - Plajer, Alex J. T1 - Fluoride recovery in degradable fluorinated polyesters N2 - We report a new class of degradable fluorinated polymers through the copolymerization of tetrafluorophthalic anhydride and propylene oxide or trifluoropropylene oxide which show up to 20 times quicker degradation than the non-fluorinated equivalents and allow for fluoride recovery. KW - Fluoropolymers KW - Recycling KW - PFAS KW - AFM force distance curves KW - AFM plastic deformation KW - AFM friction analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-606768 DO - https://doi.org/10.1039/d4cc02513j VL - 60 SP - 7479 EP - 7482 PB - Royal Society of Chemistry AN - OPUS4-60676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waniek, Tassilo A1 - Omar, Hassan A1 - Szymoniak, Paulina A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - The influence of water released from particles in epoxy‐based nanocomposites N2 - AbstractRecent studies have hypothesized that the reinforcing effects of boehmite nanoparticles (BNPs) in polymer nanocomposites (PNCs) are partly related to the particles themselves and partly to the water released from the BNP during curing. In this work, PNCs made from dried BNP (dBNP) with concentrations up to 15 wt% are investigated to differentiate particle and water related effects. The observed trend of the storage modulus in dynamic mechanical thermal analysis measurements was found to be independent of the drying procedure. Stiffness maps from intermodulation atomic force microscopy showed that dBNP leads to a stiffening of the interphase surrounding the particles compared with the unaffected epoxy matrix, while a softer interphase was reported for PNCs with as received BNP. A slight decrease in the glass transition temperature was observed by broadband dielectric spectroscopy related to a lowered crosslink density due to the particles. A significantly higher decrease was reported for PNCs with BNP, attributed to water influencing the curing process. In conclusion, the stiffening of PNC with BNP is related to the particles themselves, while the release of water causes the formation of a soft interphase in the vicinity of the particles and a significant decrease in crosslink density. KW - AFM stiffness of interface KW - Aluminium oxide hydroxide KW - Boehmit nanoparticle KW - Glass transition temperature KW - Broadband dielectric spectroscopy KW - Crosslink density control KW - Structure–property relationship KW - Nanocomposites KW - Thermoset PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-606772 DO - https://doi.org/10.1002/app.55937 SN - 0021-8995 SP - 1 EP - 16 PB - Wiley AN - OPUS4-60677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Breitenbach, Romy A1 - Silbernagl, Dorothee A1 - Toepel, J. A1 - Sturm, Heinz A1 - Broughton, William J. A1 - Sassaki, G. L. A1 - Gorbushina, Anna T1 - Corrosive extracellular polysaccharides of the rock-inhabiting model fungus Knufia petricola N2 - Melanised cell walls and extracellular polymeric matrices protect rock-inhabiting microcolonial fungi from hostile environmental conditions. How extracellular polymeric substances (EPS) perform this protective role was investigated by following development of the model microcolonial black fungus Knufia petricola A95 grown as a sub-aerial biofilm. Extracellular substances were extracted with NaOH/formaldehyde and the structures of two excreted polymers studied by methylation as well as NMR analyses. The main polysaccharide (~ 80%) was pullulan, also known as α-1,4-; α-1,6-glucan, with different degrees of polymerisation. Αlpha-(1,4)-linked-Glcp and α-(1,6)-linked-Glcp were present in the molar ratios of 2:1. A branched galactofuromannan with an α-(1,2)-linked Manp main chain and a β-(1,6)-linked Galf side chain formed a minor fraction (~ 20%). To further understand the roles of EPS in the weathering of minerals and rocks, viscosity along with corrosive properties were studied using atomic force microscopy (AFM). The kinetic viscosity of extracellular K. petricola A95 polysaccharides (≈ 0.97 × 10-6 m2 s-1) ranged from the equivalent of 2% (w/v) to 5% glycerine, and could thus profoundly affect diffusion-dominated processes. The corrosive nature of rock-inhabiting fungal EPS was also demonstrated by its effects on the aluminium coating of the AFM cantilever and the silicon layer below. KW - Corrosion KW - EPS KW - Melanised microcolonial fungi (MCF) KW - Pullulan KW - Sub-aerial biofilms (SAB) KW - α-1,4- and α-1,6-glucans KW - AFM cantilever vibration KW - Nanoviscosity KW - Nanocorrosion of aluminium and silicon PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435910 DO - https://doi.org/10.1007/s00792-017-0984-5 SN - 1433-4909 SN - 1431-0651 VL - 22 IS - 2 SP - 165 EP - 175 PB - Springer CY - Berlin AN - OPUS4-43591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Munz, Martin A1 - Sturm, Heinz T1 - Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses N2 - Laser-induced periodic surface structures (LIPSS; ripples) with different spatial characteristics have been observed after irradiation of single-crystalline indium phosphide (c-InP) with multiple linearly polarized femtosecond pulses (130 fs, 800 nm) in air. With an increasing number of pulses per spot, N, up to 100, a characteristic evolution of two different types of ripples has been observed, i.e., (i) the growth of a grating perpendicular to the polarization vector consisting of nearly wavelength-sized periodic lines and (ii), in a specific pulse number regime (N = 5-30), the additional formation of equally oriented ripples with a spatial period close to half of the laser wavelength. For pulse numbers higher than 50, the formation of micrometer-spaced grooves has been found, which are oriented perpendicular to the ripples. These topographical surface alterations are discussed in the frame of existing LIPSS theories. KW - Femtosecond laser irradiation KW - Indium phosphide KW - Microstructure KW - Laser induced periodic surface structures KW - LIPSS KW - SEM PY - 2005 DO - https://doi.org/10.1063/1.1827919 SN - 0021-8979 SN - 1089-7550 VL - 97 SP - 1 EP - 9 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-5992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kaczmarek, D. A1 - Albert, T. J. A1 - Munz, Martin A1 - Sturm, Heinz A1 - Bonse, Jörn T1 - Erratum: “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses” [J. Appl. Phys. 97, 013538 (2005)] N2 - This erratum publishes some corrections to the article “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses” [J. Appl. Phys. 97, 013538 (2005)]. PY - 2024 DO - https://doi.org/10.1063/5.0222903 SN - 0021-8979 SN - 1089-7550 VL - 136 IS - 4 SP - 1 EP - 2 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-60690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waegner, M. A1 - Schröder, M. A1 - Suchaneck, G. A1 - Sturm, Heinz A1 - Weimann, Christiane A1 - Eng, L.M. A1 - Gerlach, G. T1 - Enhanced piezoelectric response in nano-patterned lead zirconate titanate thin films N2 - In this work, Pb(Zr,Ti)O3 thin films were used to fabricate well-ordered nanodot arrays by means of nanosphere lithography. This technique is based on a two-step etch process that enables excellent control of the fabrication of ordered nanodisc arrays of defined height, diameter, and pitch. Piezoresponse force microscopy was used to investigate both non-patterned and patterned films. The topography and both the out-of-plane and the in-plane polarization were deduced in this mode. Grains of nanodots with a low aspect ratio form domain structures comparable to domains in non-patterned two-dimensional films. In contrast, nanodots with a higher aspect ratio form particular structures like bi-sectioned domain assemblies, c-shaped domains or multi-domains surrounding a center domain. The patterning of the ferroelectric material was shown to affect the formation of ferroelectric domains. The initial polycrystalline films with random polarization orientation re-orient upon patterning and then show domain structures dependent on the nanodisc diameter and aspect ratio. PY - 2012 DO - https://doi.org/10.1143/JJAP.51.11PG04 SN - 0021-4922 VL - 51 SP - 11PG04-1 - 11PG04-5 CY - Tokyo AN - OPUS4-27697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Meyer, Susann A1 - Kunte, Hans-Jörg A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Measurements and simulations of microscopic damage to DNA in water by 30 keV electrons: A general approach applicable to other radiation sources and biological targets N2 - The determination of the microscopic dose-damage relationship for DNA in an aqueous environment is of a fundamental interest for dosimetry and applications in radiation therapy and protection. We combine geant4 particle-scattering simulations in water with calculations concerning the movement of biomolecules to obtain the energy deposit in the biologically relevant nanoscopic volume. We juxtaposition these results to the experimentally determined damage to obtain the dose-damage relationship at a molecular level. This approach is tested for an experimentally challenging system concerning the direct irradiation of plasmid DNA (pUC19) in water with electrons as primary particles. Here a microscopic target model for the plasmid DNA based on the relation of lineal energy and radiation quality is used to calculate the effective target volume. It was found that on average fewer than two ionizations within a 7.5-nm radius around the sugar-phosphate backbone are sufficient to cause a single strand break, with a corresponding median lethal energy deposit being E1/2=6±4 eV. The presented method is applicable for ionizing radiation (e.g., γ rays, x rays, and electrons) and a variety of targets, such as DNA, proteins, or cells. KW - DNA KW - Radiation damage KW - Dosimetry KW - DNA radiation damage KW - Single-strand break (SSB) KW - Double-strand break (DSB) KW - Low energy electrons KW - Monte Carlo simulation KW - Radiation damage to biomolecules KW - Plasmid DNA in water KW - Lethal dose KW - Solutions (pH, salinity, cosolutes) KW - Geant4 KW - Microdosimetry PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-404244 DO - https://doi.org/10.1103/PhysRevE.95.052419 SN - 2470-0045 SN - 2470-0053 VL - 95 IS - 5 SP - 052419-1 EP - 052419-8 PB - American Physical Society CY - USA AN - OPUS4-40424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröter, Maria-Astrid A1 - Ritter, M. A1 - Holschneider, M. A1 - Sturm, Heinz T1 - Enhanced DySEM imaging of cantilever motion using artificial structures patterned by focused ion beam techniques N2 - We use a dynamic scanning electron microscope (DySEM) to map the spatial distribution of the vibration of a cantilever beam. The DySEM measurements are based on variations of the local secondary electron signal within the imaging electron beam diameter during an oscillation period of the cantilever. For this reason, the surface of a cantilever without topography or material variation does not allow any conclusions about the spatial distribution of vibration due to a lack of dynamic contrast. In order to overcome this limitation, artificial structures were added at defined positions on the cantilever surface using focused ion beam lithography patterning. The DySEM signal of such high-contrast structures is strongly improved, hence information about the surface vibration becomes accessible. Simulations of images of the vibrating cantilever have also been performed. The results of the simulation are in good agreement with the experimental images. KW - FIB patterning KW - Structured cantilever KW - AFM KW - Modal analysis KW - DySEM PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-354510 DO - https://doi.org/doi:10.1088/0960-1317/26/3/035010 VL - 26 IS - 3 SP - 035010-1 EP - 035010-7 AN - OPUS4-35451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Uhlig, F. A1 - Solomun, Tihomir A1 - Smiatek, J. A1 - Sturm, Heinz T1 - Combined influence of ectoine and salt: spectroscopic and numerical evidence for compensating effects of aqueous solutions N2 - Ectoine is an important osmolyte, which allows microorganisms to survive in extreme environmental salinity. The hygroscopic effects of ectoine in pure water can be explained by a strong water binding behavior whereas a study on the effects of ectoine in salty solution is yet missing. We provide Raman spectroscopic evidence that the influence of ectoine and NaCl are opposing and completely independent of each other. The effect can be explained by the formation of strongly hydrogen-bonded water molecules around ectoine which compensate the influence of the salt on the water dynamics. The mechanism is corroborated by first principles calculations and broadens our understanding of zwitterionic osmolytes in aqueous solution. Our findings allow us to provide a possible explanation for the relatively high osmolyte concentrations in halotolerant bacteria. KW - Ectoine KW - Aqueous solution KW - Biological structure KW - Organic osmolytes KW - Raman spectroscopy KW - Water structure PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-376761 UR - http://pubs.rsc.org/en/content/articlelanding/2016/cp/c6cp05417j#!divAbstract DO - https://doi.org/10.1039/c6cp05417j VL - 18 IS - 41 SP - 28398 EP - 28402 PB - Royal Society of Chemistry CY - UK AN - OPUS4-37676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fankhänel, J. A1 - Silbernagl, Dorothee A1 - Ghasem Zadeh Khorasani, Media A1 - Daum, B. A1 - Kempe, A. A1 - Sturm, Heinz A1 - Rolfes, R. T1 - Mechanical properties of Boehmite evaluated by Atomic Force Microscopy experiments and Molecular Dynamic Finite Element simulations N2 - Boehmite nanoparticles show great potential in improving mechanical properties of fiber reinforced polymers. In order to predict the properties of nanocomposites, knowledge about the material parameters of the constituent phases, including the boehmite particles, is crucial. In this study, the mechanical behavior of boehmite is investigated using Atomic Force Microscopy (AFM) experiments and Molecular Dynamic Finite Element Method (MDFEM) simulations. Young’s modulus of the perfect crystalline boehmite nanoparticles is derived from numerical AFM simulations. Results of AFM experiments on boehmite nanoparticles deviate significantly. Possible causes are identified by experiments on complementary types of boehmite, that is, geological and hydrothermally synthesized samples, and further simulations of imperfect crystals and combined boehmite/epoxy models. Under certain circumstances, the mechanical behavior of boehmite was found to be dominated by inelastic effects that are discussed in detail in the present work.The studies are substantiated with accompanying X-ray diffraction and Raman experiments. KW - AFM KW - MDFEM KW - Nanocomposite KW - Epoxy KW - X-ray diffraction KW - Raman spectroscopy KW - Young’s modulus KW - Slippage of weakly linked layers PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-384230 UR - https://www.hindawi.com/journals/jnm/2016/5017213/#B26 DO - https://doi.org/10.1155/2016/5017213 VL - 2016 IS - Article ID 5017213 SP - 1 EP - 13 PB - Hindawi Publishing Corporation AN - OPUS4-38423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Meyer, Susann A1 - Schröter, Maria-Astrid A1 - Seitz, H. A1 - Kunte, Hans-Jörg A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Direct electron irradiation of DNA in fully aqueous environment. Damage determination in combination with Monte Carlo simulations N2 - We report on a study in which plasmid DNA in water was irradiated with 30 keV electrons generated by a scanning electron microscope and passed through a 100 nm thick Si3N4 membrane. The corresponding Monte Carlo simulations suggest that the kinetic energy spectrum of the electrons throughout the water is dominated by low energy electrons (<100 eV). The DNA radiation damage, single-strand breaks (SSB) and double-strand breaks (DSB), was determined by electrophoresis. The median lethal dose of D1/2 = 1.7 ± 0.3 Gy was found to be much smaller compared to partially or fully hydrated DNA irradiated under vacuum conditions. The ratio of DSB to SSB was found to be (1:12) as compared to 1:88) found for hydrated DNA. Our method enables quantitative measurements of radiation damage to biomolecules (DNA, proteins) in solutions under varying conditions (pH, salinity, cosolutes) for an electron energy range which is difficult to probe by standard methods. KW - Plasmid DNA in water KW - Monte Carlo simulation KW - Low energy electrons KW - DNA radiation damage KW - Single-strand break (SSB) KW - Double-strand break (DSB) KW - Lethal dose KW - Radiation damage to biomolecules KW - Solutions (pH, salinity, cosolutes) PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-386981 DO - https://doi.org/10.1039/C6CP07707B SN - 1463-9076 SN - 1463-9084 VL - 19 IS - 3 SP - 1798 EP - 1805 PB - Royal Society of Chemistry AN - OPUS4-38698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Susann, Meyer A1 - Schröter, Maria-Astrid A1 - Kunte, Hans-Jörg A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - DNA protection by ectoine from ionizing radiation: molecular mechanisms N2 - Ectoine, a compatible solute and osmolyte, is known to be an effective protectant of biomolecules and whole cells against heating, freezing and extreme salinity. Protection of cells (human keratinocytes) by ectoine against ultraviolet radiation has also been reported by various authors, although the underlying mechanism is not yet understood. We present the first electron irradiation of DNA in a fully aqueous environment in the presence of ectoine and at high salt concentrations. The results demonstrate effective protection of DNA by ectoine against the induction of single-strand breaks by ionizing radiation. The effect is explained by an increase in low-energy electron scattering at the enhanced free-vibrational density of states of water due to ectoine, as well as the use of ectoine as an ˙OH-radical scavenger. This was demonstrated by Raman spectroscopy and electron paramagnetic resonance (EPR). KW - Ectoine KW - DNA KW - Radiation protection KW - Ionizing radiation KW - Compatible solute KW - Biomolecules KW - Sodium chloride KW - Aqueous solution KW - Hydroxyectoine KW - Raman spectroscopy KW - Electron irradiation KW - Cancer KW - Radical scavenger KW - Low energy electrons KW - Hydroxyl radical KW - OH-radical KW - Ectoin KW - UV radiation KW - Sun KW - Salt KW - Radiation therapy PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-419332 UR - http://pubs.rsc.org/en/content/articlehtml/2017/cp/c7cp02860a DO - https://doi.org/10.1039/C7CP02860A SN - 1463-9076 VL - 19 IS - 37 SP - 25717 EP - 25722 PB - Royal Society of Chemistry CY - United Kingdom AN - OPUS4-41933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fichera, Mario Augusto A1 - Braun, Ulrike A1 - Schartel, Bernhard A1 - Sturm, Heinz A1 - Knoll, Uta A1 - Jäger, Christian T1 - Solid-state NMR investigations of the pyrolysis and thermo-oxidative decomposition products of a polystyrene/red phosphorus/magnesium hydroxide system N2 - Thermal, thermo-oxidative and fire residues of high impact polystyrene/magnesium hydroxide/red phosphorus (HIPS/Mg(OH)2/Pr) are investigated by solid-state NMR and compared with the results for the binary subsystem Mg(OH)2/Pr. The influences of oxygen, nitrogen and temperature are discussed. For a thermal decomposition and pyrolysis during combustion, the main pyrolysis of HIPS takes place while the remaining residue is a rather intact polymer, with a major share of the embedded Pr still present. Subsequently, mainly amorphous phosphates and a slight amount of crystalline Mg3(PO4)2 and Mg2P2O7 are formed at the highest temperatures. Only with increasing mass loss does the remaining polystyrene structure decompose and graphitic structures occur. The influence of oxygen on the decomposition mechanism is most obvious for the binary system Mg(OH)2/Pr. Pr vanishes more rapidly and crystalline, oxygen-rich magnesium phosphates are formed. In HIPS/Mg(OH)2/Pr systems the polymer acts as a barrier to reaction by the embedded particles, so that major characteristics of an anaerobic decomposition are found. Significant amounts of phosphorus are retained in the condensed phase through a reaction of Pr with Mg(OH)2 to mostly amorphous phosphates. This formation of amorphous inorganic magnesium phosphates can act as an additional physical barrier. This study outlines some advanced approaches for controlling the condensed-phase mechanisms of phosphorus and underlines that solid-state NMR is a most powerful tool for investigating the organic and inorganic residues. KW - HIPS KW - Red phosphorus KW - Magnesium hydroxide KW - Solid-state NMR KW - Flame retarded polymers PY - 2007 SN - 0165-2370 SN - 1873-250X VL - 78 IS - 2 SP - 378 EP - 386 PB - Elsevier CY - Amsterdam AN - OPUS4-14517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Braun, Ulrike A1 - Sturm, Heinz A1 - Schartel, Bernhard T1 - Flame retardancy mechanisms of aluminium phosphinate in glass-fibre reinforced polyester T2 - Flame Retardants 2008 Conference CY - London, UK DA - 2008-02-12 PY - 2008 SN - 978-0-9556548-1-7 SP - 133 EP - 140 PB - Interscience Communications CY - London, UK AN - OPUS4-17785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Weiß, André A1 - Sturm, Heinz A1 - Kleemeier, M. A1 - Hartwig, A. A1 - Vogt, C. A1 - Fischer, R.X. T1 - Layered silicate epoxy nanocomposites: formation of the inorganic-carbonaceous fire protection layer N2 - The layered silicate (LS) modification and processing parameters applied control the morphology of the LS/polymer composites. Here, increasing the surface area of the LS particles by using alternative drying processes increases dispersion towards a more typical nanocomposite morphology, which is a basic requirement for promising flame retardancy. Nevertheless, the morphology at room temperature does not act itself with respect to flame retardancy, but serves as a prerequisite for the formation of an efficient surface protection layer during pyrolysis. The formation of this residue layer was addressed experimentally for the actual pyrolysis region of a burning nanocomposite and thus our results are valid without any assumptions or compromises on the time period, dimension, surrounding atmosphere or temperature. The formation of the inorganic-carbonaceous residue is influenced by bubbling, migration, reorientation, agglomeration, ablation, and perhaps also delamination induced thermally and by decomposition, whereas true sintering of the inorganic particles was ruled out as an important mechanism. Multiple, quite different mechanisms are relevant during the formation of the residue, and the importance of each mechanism probably differs from one nanocomposite system to another. The main fire protection effect of the surface layer in polymer nanocomposites based on non-charring or nearly non-charring polymers is the increase in surface temperature, resulting in a substantial increase in reradiated heat flux (heat shielding). KW - Nanocomposite KW - Fire retardancy KW - Epoxy resin KW - Fire behavior KW - Flammability PY - 2011 DO - https://doi.org/10.1002/pat.1644 SN - 1042-7147 SN - 1099-1581 VL - 22 IS - 12 SP - 1581 EP - 1592 PB - John Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-24916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schulz, Eckhard A1 - Sturm, Heinz A1 - Stark, Wolfgang A1 - Bovtun, V. ED - Xia, Z. T1 - Determination of electric properties of heterogeneous systems using the contact and noncontact scanning force microscopy (SFM) N2 - With an extended contact and non-contact mode scanning force microscope samples with different heterogeneous electrical properties can be characterized. The contact mode method allows the determination of local electric conductivities of heterogeneous systems at the sample surfaces. An interpretation of this behaviour can be obtained in combination with other SFM modes such as topography, friction and compliance used simultaneously. The non-contact mode SFM allows to get more information about the local surface charge of heterogeneous samples. In this paper two new SFM approaches will be discussed on examples of carbon-fibre reinforced, organic and ceramic materials T2 - 9th International Symposium on Electrets (ISE 9) CY - Shanghai, China DA - 1996-09-25 PY - 1996 SN - 0-7803-2695-4 DO - https://doi.org/10.1109/ISE.1996.578094 SP - 334 EP - 339 PB - IEEE Service Center CY - Piscataway, NJ AN - OPUS4-6852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Weba, Luciana A1 - Silbernagl, Dorothee A1 - Mota Gassó, Berta A1 - Höhne, Patrick A1 - Sturm, Heinz A1 - Pauli, Jutta A1 - Resch-Genger, Ute A1 - Steinborn, Gabriele ED - Khayat, Kamal Henry T1 - Influences of nano effects on the flow phenomena of self-compacting concrete N2 - Chemical admixtures like superplasticisers or stabilising agents are of ever increasing importance for modern concrete technology. They liberate the workability of concrete from its dependency on water content, and thus, open the gate towards innovative and future oriented concrete technologies such as selfcompacting concrete. Meanwhile admixtures have become common practice in concrete technology, but the understanding of these highly complex polymers in the entire concrete system lags far behind their application. Due to its complex time-dependent, multi-phase and multi-scale behaviour, flowable concrete systems are highly complicated and cannot be described comprehensively by simple models. It is therefore extremely challenging to identify the relevant parameters that predominantly control flow phenomena on different size scales, since these may occur on any scale between the nano scale (e.g. superplasticizer adsorption) and macro scale (e.g. grading of the aggregates). The present study discusses fundamental mechanisms at the interface between particle or hydrate surfaces and the fluid phase at a very early stage of concrete formation, and links these effects to macroscopic flow phenomena. Methods are discussed that appear promising interdisciplinary tools for enhancement of the understanding of the relevant interactions that are responsible for the macroscopic flow of flowable concrete. T2 - 8th International RILEM Symposium on Self-Compacting Concrete CY - Washington, D.C., USA DA - 15.05.2016 KW - Adsorption KW - Analytics KW - Hydration KW - Polycarboxylate ether KW - Rheology PY - 2016 SP - 245 EP - 254 AN - OPUS4-36882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Lorenz, Edelgard A1 - Weimann, Christiane A1 - Sturm, Heinz A1 - Karimov, I. A1 - Ettl, J. A1 - Meier, R. A1 - Wohlgemuth, W. A. A1 - Berger, H. A1 - Wildgruber, M. T1 - Mechanic and surface properties of central-venous port catheters after removal: A comparison of polyurethane and Silicon rubber materials N2 - Central venous port devices made of two different polymeric materials, thermoplastic polyurethane (TPU)and silicone rubber (SiR), were compared due their material properties. Both naïve catheters as well as catheters after removal from patients were investigated. In lab experiments the influence of various chemo-therapeutic solutions on material properties was investigated, where as the samples after removal were compared according to the implanted time inpatient. The macroscopic,mechanical performance was assessed with dynamic, specially adapted tests for elasticity. The degradation status of the materials was determined with common tools of polymer characterisation, such as infrared spectroscopy, molecular weight measurements and various methods of thermal analysis. The surface morphology was an alysed using scanning electron microscopy. A correlation between material properties and clinical performance was proposed. The surface morphology and chemical composition of the polyurethane catheter materials can potentially result in increased susceptibility of the catheter to bloodstream infections and thrombotic complications. The higher mechanic failure,especially with increasing implantation time of the silicone catheters is related to the lower mechanical performance compared to the polyurethane material as well as loss of barium sulphate filler particles near the surface of the catheter. This results in preformed microscopic notches, which act as predetermined sites of fracture. KW - Thermoplastic polyurethane (TPU) KW - Silicone rubber (SiR) KW - Catheters KW - Central venous access port KW - Complication KW - Structure propertyrelationship KW - Mechanical testing PY - 2016 DO - https://doi.org/10.1016/j.jmbbm.2016.08.002 SN - 1751-6161 SN - 1878-0180 VL - 64 SP - 281 EP - 291 PB - Elsevier Ltd. AN - OPUS4-37178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Tavasolyzadeh, Zeynab A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - Interpenetrating networks with tuned thermal and mechanical properties N2 - Text Multiphoton lithography (MPL) has recently attracted significant research interest as a versatile tool capable of producing 2D and 3D micro- and nanoscopic features with high spatial resolution. The integrity of MPL microstructures, or their ability to respond to external stimuli, is of critical importance. However, achieving the desired properties of fabricated microcomponents for a specific application remains a challenge. In this work, we present new MPL materials based on epoxy-acrylate interpenetrating networks (IPNs). We aim at 3D microstructures, whose properties can be easily tuned by varying the ratio of the IPN components and fabrication parameters (Figure 1). The resulting library of 3D microstructures was investigated for their thermal and mechanical properties using highly-sensitive space-resolved methods. Flash scanning calorimetry revealed the influence of both, IPN composition and fabrication parameters, on glass transition temperature and material fragility. AFM force-distance curve and intermodulation methods were used to characterize the mechanical properties with a lateral resolution of 1 micron and 4 nm, respectively. The deformation, stiffness and elastic behavior are discussed in detail in relation to the morphology. Moreover, we found that some 3D IPN microstructures exhibit fully elastic behavior. Our funding encourages the further development of IPN systems as versatile and easily tunable MPL materials. T2 - Micro Nano Engineering (MNE conference) CY - Berlin, Germany DA - 25.09.2023 KW - Interpenetrating polymer network KW - Multiphoton Lithography KW - Two photon polymerisation KW - Direct laser writing KW - Polyethylene glycol diacrylate PY - 2023 AN - OPUS4-58879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kirner, Sabrina A1 - Wirth, Thomas A1 - Sturm, Heinz A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Nanometer-resolved chemical analyses of femtosecond laser-induced periodic surface structures on titanium N2 - The chemical characteristics of two different types of laser-induced periodic surface structures (LIPSS), so-called high and low spatial frequency LIPSS (HSFL and LSFL), formed upon irradiation of titanium surfaces by multiple femtosecond laser pulses in air (30 fs, 790 nm, 1 kHz), are analyzed by various optical and electron beam based surface analytical techniques, including micro-Raman spectroscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and Auger electron spectroscopy. The latter method was employed in a high-resolution mode being capable of spatially resolving even the smallest HSFL structures featuring spatial periods below 100 nm. In combination with an ion sputtering technique, depths-resolved chemical information of superficial oxidation processes was obtained, revealing characteristic differences between the two different types of LIPSS. Our results indicate that a few tens of nanometer shallow HSFL are formed on top of a ∼150 nm thick graded superficial oxide layer without sharp interfaces, consisting of amorphous TiO2 and partially crystallized Ti2O3. The larger LSFL structures with periods close to the irradiation wavelength originate from the laser-interaction with metallic titanium. They are covered by a ∼200 nm thick amorphous oxide layer, which consists mainly of TiO2 (at the surface) and other titanium oxide species of lower oxidation states underneath. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser KW - Oxidation KW - Titanium KW - Auger electron spectroscopy PY - 2017 DO - https://doi.org/10.1063/1.4993128 SN - 0021-8979 VL - 122 IS - 10 SP - 104901, 1 EP - 9 PB - AIP Publishing CY - Melville, NY, USA AN - OPUS4-41905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz T1 - Prebarrier modified Richardson-Schottky barrier at the Metal-Polyester Interface T2 - 34th IUPAC International Symposium on Macromol. CY - Prague, Czech Republic DA - 1992-07-05 PY - 1992 AN - OPUS4-6378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Mota Gassó, Berta A1 - Sturm, Heinz A1 - Pauli, Jutta ED - Greim, M. ED - Kusterle, W. ED - Teubert, O. T1 - Influence of effects on nano and micro scale on the rheological performance of cement paste, mortar and concrete N2 - Chemical admixtures like superplasticisers or stabilising agents are of ever increasing importance for modern concrete technology. They liberate the workability of concrete from its dependency on water content, and thus, open the gate towards innovative and future oriented concrete technologies such as self-compacting concrete. Today, admixture addition has become common practice in concrete technology, but the understanding of their highly complex mode of operation is extremely difficult and demands for understanding of processes within the range between nanometres and centimetres. Due to its complex time-dependent, multi-phase and multi-scale behaviour, flowable concrete systems are highly complicated and cannot be described comprehensively by simple models. It is therefore extremely challenging to identify the relevant parameters that predominantly control flow phenomena on different size scales, since these may occur on any scale between the nano scale (e.g. superplasticizer adsorption) and macro scale (e.g. grading of the aggregates). The present study discusses fundamental mechanisms at the interface between particle or hydrate surfaces and the fluid phase at a very early stage of concrete formation, and links these effects to macroscopic flow phenomena. Methods are discussed that appear promising interdisciplinary tools for enhancement of the understanding of the relevant interactions that are responsible for the macroscopic flow of flowable concrete. T2 - 25. Workshop und Kolloquium Rheologische Messsungen an Baustoffen CY - Regensburg, Germany DA - 02.03.2016 KW - Rheology KW - Cement KW - Concrete KW - Superplasticizer KW - Nano scale PY - 2016 SN - 978-3-7345-1313-8 SP - 294 EP - 307 PB - tredition CY - Hamburg AN - OPUS4-36862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Cano Murillo, Natalia A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Hahn, Marc Benjamin A1 - Hodoroaba, Vasile-Dan A1 - Sturm, Heinz T1 - Cover image for the article "Nanomechanical study of polycarbonate/boehmite nanoparticles/epoxy ternary composite and their interphases" N2 - The image designed by Natalia Cano Murillo and colleagues shows the cross section of a ternary composite (boehmite/polycarbonate/epoxy, 80μm x 80μm). The surface was measured by AFM kelvin probe microscopy, yielding the surface potential which is shown as 3D‐surface and contour lines. The sample was further subjected to AFM force spectroscopy with a lateral resolution of 1μm², yielding the local Young's modulus, projected in false colors on the 3D surface. The ternary system, containing boehmite nanoparticles, shows a broad distribution of modulus, desirable for optimized macroscopic mechanical properties, such as high stiffness as well as toughness. KW - Boehmite KW - Epoxy KW - Polycarbonate KW - AFM KW - BNP PY - 2020 DO - https://doi.org/10.1002/app.50400 SN - 0021-8995 SN - 1097-4628 VL - 138 IS - 12 SP - 1 PB - Wiley CY - New York, NY AN - OPUS4-51831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Baudach, Steffen A1 - Kautek, Wolfgang A1 - Geuss, Markus A1 - Sturm, Heinz T1 - The precision of the femtosecond-pulse laser ablation of TiN films on silicon N2 - Ti:sapphire laser pulses of 130 fs and 800 nm were focused on 3.2-7m-thick TiN films by a 60-mm focal length lens in air. The morphology of the ablated areas generated by laser pulses at a fluence slightly above the ablation threshold was characterized in dependence on the pulse number by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The cavity profiles, depths, diameters, and volumes were quantitatively evaluated by AFM. The polarization state of the laser light is discussed as a further parameter, in addition to fluence and pulse number, that influences and controls the ablation precision of these materials. It was observed that circularly polarized radiation enhances the average ablation rates and reduces the roughness in the cavities by a factor of 2-3 as compared to linearly polarized radiation of the same incident laser fluence. Special attention was paid to the interfacial region between the coating and substrate. Ultrashort-pulse laser drilling into the Si substrate revealed the generation of columnar features which even may surmount the original coating under laser conditions. T2 - 5th International Conference on Laser Ablation ; COLA '99 CY - Göttingen, Germany DA - 1999-07-19 KW - Laser ablation KW - Picosecond PY - 1999 DO - https://doi.org/10.1007/s003390051425 SN - 0947-8396 VL - 69 IS - 7 SP - S399 EP - S402 PB - Springer CY - Berlin AN - OPUS4-778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dümichen, Erik A1 - Braun, Ulrike A1 - Senz, R. A1 - Fabian, G. A1 - Sturm, Heinz T1 - Assessment of a new method for the analysis of decomposition gases of polymers by a combining thermogravimetric solid-phase extraction and thermal desorption gas chromatography mass spectrometry N2 - For analysis of the gaseous thermal decomposition products of polymers, the common techniques are thermogravimetry, combined with Fourier transformed infrared spectroscopy (TGA–FTIR) and mass spectrometry (TGA–MS). These methods offer a simple approach to the decomposition mechanism, especially for small decomposition molecules. Complex spectra of gaseous mixtures are very often hard to identify because of overlapping signals. In this paper a new method is described to adsorb the decomposition products during controlled conditions in TGA on solid-phase extraction (SPE) material: twisters. Subsequently the twisters were analysed with thermal desorption gas chromatography mass spectrometry (TDS–GC–MS), which allows the decomposition products to be separated and identified using an MS library. The thermoplastics polyamide 66 (PA 66) and polybutylene terephthalate (PBT) were used as example polymers. The influence of the sample mass and of the purge gas flow during the decomposition process was investigated in TGA. The advantages and limitations of the method were presented in comparison to the common analysis techniques, TGA–FTIR and TGA–MS. KW - TDS-GC-MS KW - TGA-FTIR KW - TGA-MS KW - Degradation KW - Polymer KW - Solid-phase extraction PY - 2014 DO - https://doi.org/10.1016/j.chroma.2014.05.057 SN - 0021-9673 VL - 1354 SP - 117 EP - 128 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-31046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barthel, Anne-Kathrin A1 - Wachtendorf, Volker A1 - Sturm, Heinz A1 - Meyer-Plath, A. ED - Ziegahn, K.-F. T1 - Wirkung simulierter Sonnenstrahlung auf Kohlenstoffnanoröhren gefüllte Polymerkomposite N2 - Durch das Füllen von Polymeren mit Nanopartikeln oder Nanoröhren werden verbesserte Materialeigenschaften z.B. bezüglich mechanischer Stabilität, Witterungsbeständigkeit, elektrischer Leitfähigkeit und Flammschutz angestrebt. Mit dem vermehrten Einsatz derartiger Nanokomposite gewinnen aber auch Fragen des Umwelt- und Gesundheitsschutzes an Bedeutung. Es gilt zu klären, ob durch Herstellung, Benutzung und Witterungsbeanspruchung möglichweise nanoskalige Partikel freigesetzt werden können. Zu diesem Zweck wurden mit Kohlenstoffnanoröhren, Carbon Nanotubes (CNT), gefüllte Polymerkomposite spektral breitbandig wie auch quasimonochromatisch unter variierter klimatischer Beanspruchung bestrahlt. Die sich vor allem an der Oberfläche mit der Alterung abzeichnenden Veränderungen wurden mikroskopisch und spektroskopisch charakterisiert. T2 - 43. Jahrestagung der GUS 2014 CY - Stutensee-Blankenloch, Germany DA - 26.03.2014 KW - Nanokomposit KW - Nanopartikel KW - CNT KW - Bewitterung KW - Bestrahlung KW - Simulierte Sonnenstrahlung KW - Alterung PY - 2014 SN - 978-3-9816286-0-9 SP - 65 EP - 74 AN - OPUS4-31160 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barthel, Anne-Kathrin A1 - Wachtendorf, Volker A1 - Sturm, Heinz A1 - Meyer-Plath, Asmus ED - Reichert, T. T1 - Irradiation-induced surface changes on CNT-filled polymeric materials T2 - 6th European weathering symposium Natural and artificial ageing of polymers CY - Bratislava, Slovak Republic DA - 2013-09-11 PY - 2013 SN - 978-3-9813136-8-0 N1 - Serientitel: CEEES Publication – Series title: CEEES Publication IS - 16 SP - 295 EP - 308 AN - OPUS4-31161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Kovalev, Alexander A1 - Sturm, Heinz ED - Wang, Q.J. ED - Chung, Y.-W. T1 - Polymer Adhesion N2 - Polymer adhesion is the phenomenon of adhesive-bonded joint formation between polymer material and other solids brought into contact. KW - Adhesion KW - Polymer KW - Contact interaction PY - 2013 SN - 978-0-387-92896-8 SN - 978-0-387-92897-5 SN - 978-0-387-92898-2 DO - https://doi.org/10.1007/978-0-387-92897-5_816 IS - Chapter C SP - 2551 EP - 2556 PB - Springer Science + Business Media CY - New York AN - OPUS4-28972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz A1 - Kovalev, Alexander T1 - AFM investigations of surface properties of 2,4,6 trinitrophenol (TNP) crystal at the nanoscale T2 - Frühjahrstagung der Deutschen Physikalischen Gesellschaft CY - Berlin, Germany DA - 2012-03-25 PY - 2012 AN - OPUS4-27339 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -