TY - CONF A1 - Streeck, C. A1 - Dietrich, Paul A1 - Fischer, Tobias A1 - Rurack, Knut A1 - Unger, Wolfgang A1 - Beckhoff, B. T1 - Characterization of bio-molecular nano-layers by means of reference-free X-ray Spectrometry N2 - Characterization of bio-molecular nano-layers by means of reference-free X-ray Spectrometry An increasing field of application, e.g. in biotechnology is the dedicated adjustment of surface properties by functionalization with organic molecules. For a detailed understanding and further development of such nano-layers, a quantitative determination of the surface density of molecular species is required. By means of reference-free X-Ray Fluorescence (XRF) spectrometry such surfaces can be analyzed quantitatively by detecting specific marker elements. Using calibrated instrumentation and a quantification approach based on atomic fundamental parameters a SI-traceable quantitative analysis without any calibration sample or reference material is possible. A chemical analysis of molecular bonds can be accomplished by X-Ray Absorption Spectroscopy in the Near-Edge region (NEXAFS). Especially in the soft X-ray range an access to relevant light elements like Carbon C, Nitrogen N and Oxygen is possible. Here, aminated surfaces with varying densities of amino groups prepared from binary mixtures of silanes were investigated. In a complementary analysis by X-Ray Photoelectron Spectroscopy (XPS) and Fluorescence measurements based on laser-excitation in the optical light spectrum the functional-group density of silane monolayers were determined. The nitrogen atom in the head-group of the silane-molecule could be used as specific marker for the reference-free quantitative XRF analysis and were used for traceable calibration of XPS and Fluorescence Spectroscopy. T2 - EMRS Spring Meeting 2017, ALTECH 2017, Symposium S, Analytical techniques for precise characterization of nano materials CY - Strasbourg, France DA - 22.05.2017 KW - XPS KW - XRF KW - Amino silane film KW - Traceability PY - 2017 AN - OPUS4-43374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Streeck, C. A1 - Beckhoff, B. A1 - Unger, Wolfgang T1 - Quantitative XRF analysis of industrial thin film samples by calibration using thin film RMs N2 - X-ray fluorescence (XRF) analysis is a well suited methodology for thin film analysis. With XRF the mass deposition of elements can be non-destructively determined. By knowledge of the density of the thin film as well the thickness can be given. In the field of industrial thin film manufacturing various material systems and layer structures are used. the analysis relies on well-known calibration samples or even reference materials to determine absolute analytical results from the measurement values recorded. Within this concept of chemical traceability the calibration sample has to be as similar as possible to the industrial thin film sample with respect to the spatial distribution of elemental composition in order to minimize matrix effects or analysis related uncertainties. The procurement of such certified similar calibration samples or reference materials including their required traceability is a challenge due to limited number of available calibration samples or reference materials, in particular at the nanoscale. There are only few providers of calibration standards for layer or coating thicknesses which are suitable for XRF analysis. The limited number of available certified reference materials (CRMs) for XRF thin film analysis and in parallel the growing market of novel thin film materials induces a growing gap of required calibration samples for XRF analysis. The exploitation of process-near samples benefits from a leverage effect: on one hand reference materials are needed for calibration and alignment procedures for X-ray fluorescence devices. They are customized for the special need of the end-user, e.g. a company producing thin film solar cells. On the other hand the market for EDXRF devices develops positively by providing novel thin film calibration samples for industry and end user-related production processes or application. Two aspects are hereby being addressed; the improvement of product quality which in certain sectors like aerospace and automotive industry directly translates to product safety as well as the expansion of the sales potential of EDXRF measuring devices. T2 - Annual Meeting ISO TC 201 SC10 CY - Brescia, Italy DA - 17.09.2017 KW - XRF KW - Calibration KW - Traceability PY - 2017 AN - OPUS4-43375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -