TY - JOUR A1 - Stindt, Arne A1 - Andrade, M. A. B. A1 - Buurman, Merwe A1 - Adamowski, J. C. A1 - Panne, Ulrich A1 - Riedel, Jens T1 - Experimental and numerical characterization of the sound pressure in standing wave acoustic levitators JF - Review of scientific instruments N2 - A novel method for predictions of the sound pressure distribution in acoustic levitators is based on a matrix representation of the Rayleigh integral. This method allows for a fast calculation of the acoustic field within the resonator. To make sure that the underlying assumptions and simplifications are justified, this approach was tested by a direct comparison to experimental data. The experimental sound pressure distributions were recorded by high spatially resolved frequency selective microphone scanning. To emphasize the general applicability of the two approaches, the comparative studies were conducted for four different resonator geometries. In all cases, the results show an excellent agreement, demonstrating the accuracy of the matrix method. KW - Acoustic levitation KW - Matrix calculation KW - Microphony KW - Noncontact ultrasonic transportation KW - Small objects KW - Matrix-method KW - Droplets KW - Air KW - Manipulation KW - Simulation KW - Fields KW - Water PY - 2014 DO - https://doi.org/10.1063/1.4861197 SN - 0034-6748 SN - 1089-7623 N1 - Geburtsname von Buurman, Merwe: Albrecht, M. - Birth name of Buurman, Merwe: Albrecht, M. VL - 85 IS - 015110 SP - 1 EP - 6 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-30405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -