TY - JOUR A1 - Schraut, Katharina A1 - Adamczyk, Burkart A1 - Adam, Christian A1 - Stephan, D. A1 - Meng, Birgit A1 - Simon, Sebastian A1 - von Werder, Julia T1 - Synthesis and characterisation of alites from reduced basic oxygen furnace slags JF - Cement and Concrete Research N2 - Basic oxygen furnace slags (BOFS) are by-products of the steelmaking process. Several researchers have studied the production of Portland cement clinker and metallic iron from BOFS via a reductive treatment. In this study, we applied a carbothermal reduction of BOFS in a technical-scale electric arc furnace and characterised the clinker-like products. Those clinker-like non-metallic products (NMPs) had a chemical and mineralogical composition comparable to clinker for ordinary Portland cement (OPC) and contained large elongated alite crystals as major component. The pure NMPs reacted more slowly and achieved a lower degree of hydration compared with commercial OPC. If the reactivity of the products can be further increased by employing specific adaptations, it can be used as a full clinker substitute for OPC. Nevertheless, it is also an option to use the material without further modifications as a cement component or concrete addition, which contributes to the strength development in both cases. KW - BOFS KW - Hydration products KW - Thermal analysis KW - X-ray diffraction PY - 2021 DO - https://doi.org/10.1016/j.cemconres.2021.106518 SN - 0008-8846 VL - 147 SP - 6518 PB - Elsevier Ltd. AN - OPUS4-52939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winnefeld, F. A1 - Gluth, Gregor A1 - Bernal, S. A. A1 - Bignozzi, M. C. A1 - Carabba, L. A1 - Chithiraputhiran, S. A1 - Dehghan, A. A1 - Dolenec, S. A1 - Dombrowski-Daube, K. A1 - Dubey, A. A1 - Ducman, V. A1 - Yu, J. A1 - Peterson, K. A1 - Stephan, D. A1 - Provis, J. L. T1 - RILEM TC 247-DTA round robin test: sulfate resistance, alkali-silica reaction and freeze–thaw resistance of alkali-activated concretes JF - Materials and Structures N2 - The RILEM technical committee TC 247-DTA ‘Durability Testing of Alkali-Activated Materials’ conducted a round robin testing programme to determine the validity of various durability testing methods, originally developed for Portland cement based-concretes, for the assessment of the durability of alkali-activated concretes. The outcomes of the round robin tests evaluating sulfate resistance, alkali-silica reaction (ASR) and freeze–thaw resistance are presented in this contribution. Five different alkali-activated concretes, based on ground granulated blast furnace slag, fly ash, or metakaolin were investigated. The extent of sulfate damage to concretes based on slag or fly ash seems to be limited when exposed to an Na2SO4 solution. The mixture based on metakaolin showed an excessive, very early expansion, followed by a dimensionally stable period, which cannot be explained at present. In the slag-based concretes, MgSO4 caused more expansion and visual damage than Na2SO4; however, the expansion limits defined in the respective standards were not exceeded. Both the ASTM C1293 and RILEM AAR-3.1 test methods for the determination of ASR expansion appear to give essentially reliable identification of expansion caused by highly reactive aggregates. Alkali-activated materials in combination with an unreactive or potentially expansive aggregate were in no case seen to cause larger expansions; only the aggregates of known very high reactivity were seen to be problematic. The results of freeze–thaw testing (with/without deicing salts) of alkali-activated concretes suggest an important influence of the curing conditions and experimental conditions on the test outcomes, which need to be understood before the tests can be reliably applied and interpreted. KW - Alkali-activated materials KW - Sulfate attack KW - Alkali silica reaction KW - Alkali aggregate reaction KW - Freeze-thaw attack PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515527 DO - https://doi.org/10.1617/s11527-020-01562-0 VL - 53 IS - 6 SP - 140 PB - Springer Nature AN - OPUS4-51552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kazlagic, Anera A1 - Vogl, Jochen A1 - Gluth, Gregor A1 - Stephan, D. T1 - Provenancing of cement using elemental analyses and isotope techniques – The state-of-the-art and future perspectives JF - Journal of analytical atomic spectrometry N2 - With the aim of identifying the origin and the manufacturer of a cement, a reliable procedure that provides unambiguous results is needed. Such procedure could resolve practical issues in damage research, liability issues and forensic investigations. A substantial number of attempts for fingerprinting of building materials, including cement, has already been carried out during the last decades. Most of them were based on concentration analysis of the main elements/components. This review provides an overview of provenance studies of cement and the main approaches commonly used. Provenance studies of cement via isotope techniques are also presented and discussed as representatives of the state-of-the-art in the field. Due to the characteristic properties and the occurrence of carefully selected isotope ratios, unique fingerprints of different kinds of materials can be provided by these methods. This property has largely been explored in various scientific fields such as geo- and cosmochemistry, food forensics, archaeology, geochronology, biomedical studies, and climate change processes. However, the potential of isotope techniques in cement and concrete research for provenance studies has barely been investigated. Therefore, the review outlines a suitable approach using isotope ratios, which could lead to reliable provenancing of cementitious materials in the future. KW - Cement KW - Sr isotopes KW - Provenance PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533762 DO - https://doi.org/10.1039/d1ja00144b VL - 36 IS - 10 SP - 2030 EP - 2042 PB - The Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-53376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kazlagic, Anera A1 - Russo, Francesco A1 - Vogl, Jochen A1 - Sturm, Patrick A1 - Stephan, D. A1 - Gluth, Gregor ED - Resch-Genger, Ute ED - Koch, Matthias ED - Meermann, Björn ED - Weller, Michael G. T1 - Development of a sample preparation procedure for Sr isotope analysis of Portland cements JF - Analytical and bioanalytical chemistry N2 - The 87Sr/86Sr isotope ratio can, in principle, be used for provenancing of cement. However, while commercial cements consist of multiple components, no detailed investigation into their individual 87Sr/86Sr isotope ratios or their influence on the integral 87Sr/86Sr isotope ratio of the resulting cement was conducted previously. Therefore, the present study aimed at determining and comparing the conventional 87Sr/86Sr isotope ratios of a diverse set of Portland cements and their corresponding Portland clinkers, the major component of these cements. Two approaches to remove the additives from the cements, i.e. to measure the conventional 87Sr/86Sr isotopic fingerprint of the clinker only, were tested, namely, treatment with a potassium hydroxide/sucrose solution and sieving on a 11-µm sieve. Dissolution in concentrated hydrochloric acid/nitric acid and in diluted nitric acid was employed to determine the 87Sr/86Sr isotope ratios of the cements and the individual clinkers. The aim was to find the most appropriate sample preparation procedure for cement provenancing, and the selection was realised by comparing the 87Sr/86Sr isotope ratios of differently treated cements with those of the corresponding clinkers. None of the methods to separate the clinkers from the cements proved to be satisfactory. However, it was found that the 87Sr/86Sr isotope ratios of clinker and cement generally corresponded, meaning that the latter can be used as a proxy for the clinker 87Sr/86Sr isotope ratio. Finally, the concentrated hydrochloric acid/nitric acid dissolution method was found to be the most suitable sample preparation method for the cements; it is thus recommended for 87Sr/86Sr isotope analyses for cement provenancing. KW - Cement KW - Provenancing KW - Sr isotopes KW - Portland clinker KW - Dissolution PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542239 DO - https://doi.org/10.1007/s00216-021-03821-7 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - 15 (Topical collection: Analytical methods and applications in the materials and life sciences) SP - 4379 EP - 4389 PB - Springer CY - Berlin AN - OPUS4-54223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ji, Y. A1 - Becker, S. A1 - Lu, Z. A1 - Mezhov, Alexander A1 - von Klitzing, R. A1 - Schmidt, Wolfram A1 - Stephan, D. T1 - Effect of resting time on rheological properties of glass bead suspensions - Depletion and bridging force among particles JF - Journal of the American Ceramic Society N2 - The effect of resting time on the rheological properties of cement suspensions is generally explained by early formed structure and overconsumption of polycarboxylate superplasticizers (PCEs). In this paper, we propose that the influence of resting time on the rheological properties is closely related to size variation of non-absorbed PCE. To identify this, glass bead suspensions were prepared with various amounts of PCE and ionic solution, and their rheological properties were evaluated at various times. We found that the yield stress increases with time at higher PCE concentrations and higher ionic strength solutions. Adsorbed PCE during resting tends to bridge the particles rather than disperse them. In addition, it was found that hydrodynamic radius of PCE increased with resting time, and depletion forces resulting from non-absorbed PCE size changes correlate well with the increased yield stress. KW - Depletion force KW - Ionic stregth KW - PCE KW - Rheology KW - Resting time PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587193 DO - https://doi.org/10.1111/jace.19469 SN - 0002-7820 SN - 1551-2916 VL - 107 IS - 1 SP - 624 EP - 639 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-58719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haist, M. A1 - Link, J. A1 - Nicia, D. A1 - Leinitz, Sarah A1 - Baumert, C. A1 - von Bronk, T. A1 - Cotardo, D. A1 - Eslami Pirharati, M. A1 - Fataei, S. A1 - Garrecht, H. A1 - Gehlen, C. A1 - Hauschildt, I. A1 - Ivanova, I. A1 - Jesinghausen, S. A1 - Klein, C. A1 - Krauss, H.-W. A1 - Lohaus, L. A1 - Lowke, D. A1 - Mazanec, O. A1 - Pawelczyk, S. A1 - Pott, U. A1 - Radebe, N. W. A1 - Riedmiller, J. J. A1 - Schmid, H.-J. A1 - Schmidt, Wolfram A1 - Secrieru, E. A1 - Stephan, D. A1 - Thiedeitz, M. A1 - Wilhelm, M. A1 - Mechtcherine, V. T1 - Interlaboratory study on rheological properties of cement pastes and reference substances: comparability of measurements performed with different rheometers and measurement geometries JF - Materials and Structures N2 - This paper presents the results of an interlaboratory study of the rheological properties of cement paste and ultrasound gel as reference substance. The goal was to quantify the comparability and reproducibility of measurements of the Bingham parameters yield stress and plastic viscosity when measured on one specific paste composition and one particular ultrasound gel in different laboratories using different rheometers and measurement geometries. The procedures for both in preparing the cement paste and carrying out the rheological measurements on cement paste and ultrasound gel were carefully defined for all of the study’s participants. Different conversion schemes for comparing the results obtained with the different measurement setups are presented here and critically discussed. The procedure proposed in this paper ensured a reasonable comparability of the results with a coefficient of variation for the yield stress of 27% and for the plastic viscosity of 24%, despite the individual measurement series’ having been performed in different labs with different rheometers and measurement geometries. KW - Rheometry KW - Rheology KW - Interlaboratory test KW - Test setup KW - Testing procedure KW - Cement paste KW - Ultrasound gel PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511220 DO - https://doi.org/10.1617/s11527-020-01477-w SN - 1871-6873 VL - 53 IS - 4 SP - 92 PB - Rilem AN - OPUS4-51122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Z. A1 - Becker, S. A1 - Leinitz, Sarah A1 - Schmidt, Wolfram A1 - von Klitzing, R. A1 - Stephan, D. T1 - Interaction of Different Charged Polymers with Potassium Ions and Their Effect on the Yield Stress of Highly Concentrated Glass Bead Suspensions JF - Materials N2 - The interaction of different charged polymers, namely anionic polycarboxylate superplasticizer (PCE) and neutral polyethylene glycol (PEG) with potassium ions, and their effect on the yield stress of highly concentrated glass bead suspension (GBS), were studied under different concentrations of potassium ions ([K+]). It was found that, compared to the neutral PEG, the negatively charged PCE can be adsorbed on glass beads (GB), and then decreases the yield stress of GBS. The increasing concentration of free polymer in the interstitial liquid phase with the increased polymer dosage leads to the higher yield stress of GBS, which may be caused by the higher Depletion force. In addition, this effect is also related to the charge density of the polymer and the [K+] in the solution. Along with the increase in [K+], the yield stress of GBS increases significantly with the addition of PCE, but this cannot be observed with PEG, which indicates that potassium ions can interact with negatively charged PCE instead of the neutral PEG. At last, the interparticle Forces between two single GB with adsorbed PCE in solutions containing [K+] and PCE were measured by colloidal probe atomic force microscopy to better understand the interaction of the charged polymer with counterions. KW - Yield stress KW - Free polymer KW - Charge density KW - Depletion force KW - Potassium ions PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506015 DO - https://doi.org/10.3390/ma13071490 SN - 1996-1944 VL - 13 IS - 7 SP - 1490, 1 EP - 1490, 16 PB - MDPI AN - OPUS4-50601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Z. A1 - Haist, M. A1 - Ivanov, D. A1 - Jakob, C. A1 - Jansen, D. A1 - Leinitz, Sarah A1 - Link, J. A1 - Mechtcherine, V. A1 - Neubauer, J. A1 - Plank, J. A1 - Schmidt, Wolfram A1 - Schilde, C. A1 - Schröfl, C. A1 - Sowoidnich, T. A1 - Stephan, D. T1 - Characterization data of reference cement CEM I 42.5 R used for Priority Program DFG SPP 2005 “Opus Fluidum Futurum - Rheology of reactive, multiscale, multiphase construction materials” JF - Data in Brief N2 - A thorough characterization of starting materials is the precondition for further research, especially for cement, which contains various phases and presents quite a complex material for fundamental scientific investigation. In the paper at hand, the characterization data of the reference cement CEM I 42.5 R used within the priority program 2005 of the German Research Foundation (DFG SPP 2005) are presented from the aspects of chemical and mineralogical compositions as well as physical and chemical properties. The data were collected based on tests conducted by nine research groups involved in this cooperative program. For all data received, the mean values and the corresponding errors were calculated. The results shall be used for the ongoing research within the priority program. KW - Portland cement KW - Characterization KW - DFG SPP 2005 PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-500849 DO - https://doi.org/10.1016/j.dib.2019.104699 SN - 2352-3409 VL - 27 SP - 104699 PB - Elsevier Inc. AN - OPUS4-50084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pott, U. A1 - Crasselt, Claudia A1 - Fobbe, N. A1 - Haist, M. A1 - Heinemann, M. A1 - Hellmann, S. A1 - Ivanov, D. A1 - Jakob, C. A1 - Jansen, D. A1 - Lei, L. A1 - Li, R. A1 - Link, J. A1 - Lowke, D. A1 - Mechtcherine, V. A1 - Neubauer, J. A1 - Nicia, D. A1 - Plank, J. A1 - Reißig, S. A1 - Schäfer, T. A1 - Schilde, C. A1 - Schmidt, Wolfram A1 - Schröfl, C. A1 - Sowoidnich, T. A1 - Strybny, B. A1 - Ukrainczyk, N. A1 - Wolf, J. A1 - Xiao, P. A1 - Stephan, D. T1 - Characterization data of reference materials used for phase II of the priority program DFG SPP 2005 “Opus Fluidum Futurum –Rheology of reactive, multiscale, multiphase construction materials” JF - Data in Brief N2 - A thorough characterization of base materials is the prereq- uisite for further research. In this paper, the characterization data of the reference materials (CEM I 42.5 R, limestone pow- der, calcined clay and a mixture of these three components) used in the second funding phase of the priority program 2005 of the German Research Foundation (DFG SPP 2005) are presented under the aspects of chemical and min- eralogical composition as well as physical and chemical properties. The data were collected based on tests performed by up to eleven research groups involved in this cooperative program. KW - Portland cement KW - Limestone powder KW - Calcined clay KW - Sustainable cement KW - DFG SPP 2005 PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569913 DO - https://doi.org/10.1016/j.dib.2023.108902 VL - 47 SP - 1 EP - 19 PB - Elsevier AN - OPUS4-56991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Z. C. A1 - Haist, M. A1 - Ivanov, D. A1 - Jakob, C. A1 - Jansen, D. A1 - Schmid, M. A1 - Kißling, P. A. A1 - Leinitz, Sarah A1 - Link, J. A1 - Mechtcherine, V. A1 - Neubauer, J. A1 - Plank, J. A1 - Schmidt, Wolfram A1 - Schilde, C. A1 - Schröfl, C. A1 - Sowoidnich, T. A1 - Stephan, D. T1 - Characterization data of reference cement CEM III/A 42.5N used for priority program DFG SPP 2005 "Opus Fluidum Futurum - Rheology of reactive, multiscale, multiphase construction materials" JF - Data in brief N2 - Two types of cements were selected as the reference cement in the priority program 2005 of the German Research Foundation (DFG SPP 2005). A thorough characterization of CEM I 42.5 R has been made in a recent publication. In this paper, the characterization data of the other reference cement CEM III/A 42.5 N are presented from the aspects of chemical and mineralogical compositions as well as physical and chemical properties. The characterization data of the slag, which is the second main constituent of this specific cement besides the clinker, are presented independently. For all data received, the mean values and the corresponding errors were calculated. The data shall be used for the ongoing research within the priority program. Also, researchers from outside this priority program can benefit from these data if the same materials are used. KW - Cement KW - Slag KW - Characterization KW - DFG SPP 2005 PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568980 DO - https://doi.org/10.1016/j.dib.2020.105524 SN - 2352-3409 VL - 30 SP - 1 EP - 14 PB - Elsevier CY - Amsterdam AN - OPUS4-56898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -