TY - JOUR A1 - Becker, Roland A1 - Reck, Günter A1 - Radeglia, Reiner A1 - Springer, A. A1 - Schulz, Burkhard T1 - Designed self-assembly of a bimolecular calix[4]resorcinarene capsule held together by hydrogen bonds N2 - The X-ray crystallographic study of the macrocyclic tetrakis-N[N-2-hydroxyethyl-piperazino]calix[4]resorcinarene·3CH3CH2OH·H2O (3) reveals a self-assembled dimeric capsule-like complex held together by an array of intermolecular hydrogen bonds. Pairs of concave molecules associate directly in bowl-to-bowl fashion and enclose an accessible supramolecular cavity of Å3 hosting one water and three ethanol molecules. The supramolecular arrangement displays alternating layers of facing bowls and interlocking lower rim aliphatic moieties. The helical conformation of the 2-hydroxyethyl piperazinomethyl moieties displays chirality of a bimolecular capsule frozen in the solid state. 3 crystallises in the triclinic space group P-1 with two symmetry independent molecules in the asymmetric unit. Two enantiomeric capsules form a racemic pair in the unit cell. KW - Hydrogen bonded molecular capsule KW - Conformational chirality KW - Calix[4]resorcinarenes KW - Crystal structure PY - 2006 U6 - https://doi.org/10.1016/j.molstruc.2005.08.027 SN - 0022-2860 SN - 1872-8014 SN - 0377-046X VL - 784 IS - 1-3 SP - 157 EP - 161 PB - Elsevier CY - Amsterdam AN - OPUS4-12241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baytekin, H.T. A1 - Baytekin, B. A1 - Schulz, a. A1 - Springer, A. A1 - Gross, Thomas A1 - Unger, Wolfgang A1 - Artamonova, M. A1 - Schlecht, S. A1 - Lentz, D. A1 - Schalley, C.A. T1 - Metallo-supramolecular nanospheres via hierarchical self-assembly N2 - A novel coordination oligo/polymer is synthesized by metal-directed self-assembly from equimolar amounts of the (dppp)M(OTf)2 precursor complexes (dppp = bis-(diphenylphosphino)-propane, OTf = triflate; M = PdII or M = PtII) and banana-shaped bidentate dipyridyl ligands. The assemblies were characterized by ESI mass spectrometry and NMR spectroscopy. The analysis of the cloudy suspension prepared by dissolving the coordination polymer in aqueous methanol solutions indicates nanosized spherical objects to form. Evidence for vesicle formation from these metallo-supramolecular oligomers comes from (cryogenic) transmission electron microscopy (TEM, cryo-TEM). Atomic force microscopy revealed stable nanospheres on hydrophilic mica and monolayer formation on hydrophobic highly oriented pyrolitic graphite (HOPG) substrates. On mica, also torus-shaped object were observed, which are rationalized by vesicles that opened during the drying procedure and released the internal solvent. Elemental analysis of the nanoassemblies by X-ray photoelectron spectroscopy (XPS) indicates uncoordinated and coordinated pyridines in the coordination polymers that form the nanospheres. Various control experiments using different metal centers and modified ligands support the conclusions. KW - Self-assembly KW - Metallo-supramolecular chemistry KW - Coordination polymers KW - Vesicles KW - Electron microscopy KW - Nano-materials PY - 2009 U6 - https://doi.org/10.1021/cm900642p SN - 0897-4756 SN - 1520-5002 VL - 21 IS - 13 SP - 2980 EP - 2992 PB - American Chemical Society CY - Washington, DC AN - OPUS4-19638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hieu, D.T. A1 - Kosslick, H. A1 - Riaz, M. A1 - Schulz, A. A1 - Springer, A. A1 - Frank, M. A1 - Jäger, Christian A1 - Minh Thu, N.T. A1 - Son, L.T. T1 - Acidity and Stability of Bronsted Acid Sites in Green Clinoptilolite Catalysts and Catalytic Performance in the Etherification of Glycerol N2 - Natural zeolite clinoptilolite CLIN with a framework ratio of Si/Al ≥ 4 containing mainly potassium and calcium ions in its internal channel system was used as a starting material. The acidic HCLIN catalysts were prepared under soft conditions avoiding the use of environmental less benign mineral acids. The starting material was ion exchanged using a 0.2 M aqueous ammonium nitrate solution at a temperature 80 ◦C for 2 h. The obtained NH4CLIN was converted into the acid HCLIN catalyst by calcination at 300–600 ◦C. The obtained samples were characterized by XRD, FTIR, SEM/TEM, AAS, and EDX element mapping. The state of aluminium and silicon was studied by 27Al- and 29SiMAS NMR spectroscopy. The textural properties of the catalysts were investigated by nitrogen adsorption and desorption measurements. The Brønsted acidity of the HCLIN catalysts was studied by temperature-programmed decomposition of the exchanged ammonium ions releasing ammonia as well as 1H MAS NMR, {1H–27Al} Trapdor, and {1H–27Al} Redor experiments. The strongly agglomerated samples were crystalline and thermally stable up to >500 ◦C. Although a part of the clinoptilolite framework is maintained up to 600 ◦C, a loss of crystallinity is already observed starting from 450 ◦C. The specific surface areas of the starting CLIN and ammonium exchanged NH4CLIN are low with ca. 26 m2/g. The pores are nearly blocked by the exchangeable cations located in the zeolite pores. The thermal decomposition of the ammonium ions by calcination at 400 ◦C causes an opening of the pore entrances and a markable increase in the specific micropore area and micropore volume to ca. 163 m2/g and 0.07 cm3/g, respectively. It decreases with further rising calcination temperature indicating some structural loss. The catalysts show a broad distribution of Brønsted acid sites (BS) ranging from weak to strong sites as indicated the thermal decomposition of exchanged ammonium ions (TPDA). The ammonium ion decomposition leaving BS, i.e., H+ located at Al–O–Si framework bridges, starts at ≥250 ◦C. A part of the Brønsted sites is lost after calcination specifically at 500 ◦C. It is related to the formation of penta-coordinated aluminium at the expense of tetrahedral framework aluminium. The Brønsted sites are partially recreated after repeated ammonium ion exchange. The catalytic performance of the acidic HCLIN catalysts was tested in the etherification of glycerol as a green renewable resource with different C1 -C4 alcohols. The catalysts are highly active in the etherification of glycerol, especially with alcohols containing the branched, tertiary alkyl groups. Highest activity is observed with the soft activated catalyst HCLIN300 (300 ◦C, temperature holding time: 1 min). A total of 78% conversion of glycerol to mono and di ether were achieved with tert-butanol at 140 ◦C after 4 h of reaction. The mono- and di-ether selectivity were 75% and 25%, respectively. The catalyst can be reused. KW - Etherification KW - Glycerol KW - Zeolite KW - Clinoptilolite KW - Bronsted acidity KW - Dehydroxylation PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-546982 VL - 12 IS - 3 SP - 1 EP - 24 PB - MDPI AN - OPUS4-54698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ickert, Stefanie A1 - Schwaar, Timm A1 - Springer, A. A1 - Grabarics, M. A1 - Riedel, Jens A1 - Beck, S. A1 - Pagel, K. A1 - Linscheid, M. W. T1 - Comparison of the fragmentation behavior of DNA and LNA single strands and duplexes N2 - DNA and locked nucleic acid (LNA) were characterized as single strands, as well as double stranded DNA-DNA duplexes and DNA-LNA hybrids using tandem mass spectrometry with collision-induced dissociation. Additionally, ion mobility spectrometry was carried out on selected species. Oligonucleotide duplexes of different sequences – bearing mismatch positions and abasic sites of complementary DNA 15-mers – were investigated to unravel general trends in their stability in the gas phase. Single stranded LNA oligonucleotides were also investigated with respect to their gas phase behavior and fragmentation upon collision-induced dissociation. In contrast to the collision-induced dissociation of DNA, almost no base loss was observed for LNAs. Here, backbone cleavages were the dominant dissociation pathways. This finding was further underlined by the need for higher activation energies. Base losses from the LNA strand were also absent in fragmentation experiments of the investigated DNA-LNA hybrid duplexes. While DNA-DNA duplexes dissociated easily into single stranded fragments, the high stability of DNA-LNA hybrids resulted in predominant fragmentation of the DNA part rather than the LNA, while base losses were only observed from the DNA single strand of the hybrid. KW - Oligonucleotide fragmentation KW - Locked nucleic acids KW - Collision induced dissociation (CID) KW - Double strands KW - Ion mobility spectrometry PY - 2019 U6 - https://doi.org/10.1002/jms.4344 VL - 54 IS - 5 SP - 402 EP - 411 PB - Wiley AN - OPUS4-47485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -