TY - JOUR A1 - Spitzer, Stefan A1 - Jankuj, V. A1 - Hecht, K. A1 - Krietsch, Arne T1 - Igniting volume of four ignition sources JF - Process safety and environmental protection N2 - Several standardized ignition sources are used to determine the safety characteristics of gases, vapours and dusts. Standards indicate the source of ignition but vary in specifying other features such as the burning duration, energy or the volume in which the energy is released. Since heat is not visible under normal conditions, a schlieren technique was used to visualize the entire igniting volume and not just the flames. This article focuses on the igniting volume, compares it among the four standardized ignition sources and displays its relationship to the size of the test vessel. Differences in the ignition behaviour of the ignition sources might lead to the determination of erroneous safety characteristics and with that to the unsafe operation of processes. KW - Hybrid mixtures KW - 20L-sphere KW - Ignition sources KW - Exploding wire PY - 2023 DO - https://doi.org/10.1016/j.psep.2022.12.076 SN - 0957-5820 VL - 170 SP - 1200 EP - 1207 PB - Elsevier CY - Amsterdam AN - OPUS4-56855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Dejian A1 - Zhao, P. A1 - Spitzer, Stefan A1 - Krietsch, Arne A1 - Amyotte, P. A1 - Krause, U. T1 - A review on hybrid mixture explosions: Safety parameters, explosion regimes and criteria, flame characteristics JF - Journal of loss prevention in the process industries N2 - The hybrid mixture of combustible dusts and flammable gases/vapours widely exist in various industries, including mining, petrochemical, metallurgical, textile and pharmaceutical. It may pose a higher explosion risk than gas/vapor or dust/mist explosions since the hybrid explosions can still be initiated even though both the gas and the dust concentration are lower than their lower explosion limit (LEL) values. Understanding the explosion threat of hybrid mixtures not only contributes to the inherent safety and sustainability of industrial process design, but promotes the efficiency of loss prevention and mitigation. To date, however, there is no test standard with reliable explosion criteria available to determine the safety parameters of all types of hybrid mixture explosions, nor the flame propagation and quenching mechanism or theoretical explanation behind these parameters. This review presents a state-of-the-art overview of the comprehensive understanding of hybrid mixture explosions mainly in an experimental study level; thereby, the main limitations and challenges to be faced are explored. The discussed main contents include the experimental measurement for the safety parameters of hybrid mixtures (i.e., explosion sensitivity and severity parameters) via typical test apparatuses, explosion regime and criterion of hybrid mixtures, the detailed flame propagation/quenching characteristics behind the explosion severities/sensitivities of hybrid mixtures. This work aims to summarize the essential basics of experimental studies, and to provide the perspectives based on the current research gaps to understand the explosion hazards of hybrid mixtures in-depth. KW - Hybrid mixtures KW - Explosion protection KW - Safety characteristics PY - 2023 DO - https://doi.org/10.1016/j.jlp.2022.104969 SN - 0950-4230 VL - 82 SP - 1 EP - 54 PB - Elsevier CY - Amsterdam AN - OPUS4-56856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spitzer, Stefan A1 - Riesner, G. A1 - Zakel, S. A1 - Schierding, C. T1 - A New Ignition Source for the Determination of Safety Characteristics of Gases JF - Gases N2 - Safety characteristics are used to keep processes, including flammable gases, vapors, and combustible dusts, safe. In the standards for the determination of safety characteristics of gases and vapors, the induction spark is commonly used. However, classic transformers are hard to obtain, and replacement with new electronic transformers is not explicitly allowed in the standards. This article presents the investigation of five gases that are normally used to calibrate devices for the determination of safety characteristics, the maximum experimental safe gap (MESG), with an electronic transformer, and the values are compared to the ones that are obtained with the standard transformer. Additionally, calorimetric measurements on the net energy of both ignition sources were performed as well as open-circuit voltage measurements. It is concluded that the classic type of transformer can be replaced by the new type obtaining the same results for the MESG and introducing the same amount of energy into the system. KW - Safety characteristics KW - Ignition sources KW - MESG PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578528 DO - https://doi.org/10.3390/gases3030007 VL - 3 IS - 3 SP - 106 EP - 111 PB - MDPI CY - Basel AN - OPUS4-57852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spitzer, Stefan A1 - Askar, Enis A1 - Hecht, Kristin A1 - Gabel, Dieter A1 - Geoerg, Paul A1 - Krause, Ulrich A1 - Dufaud, Olivier A1 - Krietsch, Arne ED - Amyotte, Paul T1 - The maximum rate of pressure rise of hybrid mixtures JF - Journal of Loss Prevention in the Process Industries N2 - The maximum rate of pressure rise (dp/dt)𝑚𝑎𝑥 and the corresponding K-value of hybrid mixtures containing flammable gases and dusts are important for constructive explosion protection measures. Since the safety characteristics of dusts and gases are determined under different conditions, there has been considerable confusion about the influence of flammable gas on the (dp/dt) of dusts and vice versa. While some investigations showed comparably higher values for hybrid mixtures, others stated that the highest value for the gas component alone is the worst case. The first part of this paper focuses on the confusion around the different statements about (dp/dt)𝑚𝑎𝑥 of hybrid mixtures and where they come from. In the second part of this paper experimental results are presented that illustrate how to clarify the different findings of past research and show what to expect as a real worst-case-value for hybrid mixtures. KW - Hybrid Mixtures KW - 20L-sphere KW - Turbulent combustion KW - Maximum rate of pressure rise PY - 2023 DO - https://doi.org/10.1016/j.jlp.2023.105178 SN - 0950-4230 SN - 1873-3352 VL - 86 SP - 1 EP - 9 PB - Elsevier CY - Amsterdam AN - OPUS4-58435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Spitzer, Stefan T1 - Influence of the ignition source on the Safety Characteristics of hybrid dust-gas mixtures N2 - Safety characteristics like the lower explosion limit, the highest concentration for a given substance mixed with air that does not result in a self-propagating flame, or the maximum explosion pressure, the highest pressure that can be reached after ignition for a given combustible substance mixed with air at any concentration, are widely used in the industry to either prevent an explosion or to mitigate the effects of it. Safety characteristics are not physical constants, are determined experimentally and depend on the chosen experimental parameters such as the ignition energy or turbulence. For the determination of the safety characteristics lower explosion limit (LEL), limiting oxygen concentration (LOC), maximum explosion pressure (pmax) and maximum rate of pressure rise ((dp/dt)max) of gases and vapors the gas is filled via partial pressures into a test vessel and then ignited under quiescent conditions with a weak (2 J - 20 J) ignition source. For dusts, the same safety characteristics are determined under turbulent conditions to elevate the dust homogeneously and it is ignited with two chemical igniters with an ignition energy of 1000 J each (LEL and LOC) or 5000 J each (pmax and (dp/dt)max). For the determination of safety characteristics of hybrid mixtures (a mixture containing a combustible dust and a flammable gas) there is no existing standard. In the last 40 years most of the research on their safety characteristics was performed with dust testing equipment that was modified for the addition of flammable gas. Because of the different mixing procedures of gases and dusts with air and because of different ignition energies and sources that are normally used for the standard tests of gases or dusts, the results were hardly reproducible. Statements about the different safety characteristics were contradictory and left the reader or the person responsible for designing safety measures for a process plant or a facility behind with no clear suggestion about the behavior of hybrid mixtures. This thesis is aimed on determining the influence of the different ignition sources and energies on the safety characteristics pmax, (dp/dt)max, lower explosion limit, and limiting oxygen concentration of hybrid mixtures. Several test series were conducted to characterize different standardized ignition sources, that are already in use for the determination of safety characteristics of single-phase substances (gases, liquids, dusts). The burning duration, the igniting volume and the net energy were investigated. It was shown, that the chemical igniters and the exploding wire are suitable ignition sources for the determination of safety characteristics of hybrid mixtures in general. Their burning duration was long enough to ignite dusts and quick enough, that the decay of the turbulence or sedimentation of the dusts did not occur. Both ignition sources produced comparable results for the determination of pmax, LEL and (dp/dt)max of dusts when they had the same ignition energy. A reduced ignition energy of the exploding wire and the chemical igniters did not affect the pmax and (dp/dt)max. The LEL changed with lower energies. However, for the determination of the LOC of hybrid mixtures the exploding wires with an overall energy of 2 kJ produced the best results. The influence of the different mixing procedures that have already been used for hybrid mixtures and the requirements for them were also investigated experimentally for the gas concentration and the determined safety characteristics and compared to each other. It was shown, that the partial pressure method works for mixing hybrid mixtures but the pressures should be measured very accurately and the gas concentration should be validated. Furthermore, the influence of the turbulence that is inevitable when testing dusts, on the safety characteristics of gases was determined. It was found that the chemical igniters and exploding wires produced comparable results for the determination of pmax, LEL and (dp/dt)max under turbulence. For the LOC only exploding wires with two times 1 kJ worked. Finally, the safety characteristics of hybrid mixtures were determined with different ignition energies and sources and the data were compared. It was discovered, that the pmax of hybrid mixtures was the same value than the higher determined one of the single substances while (dp/dt)max of hybrid mixtures was about 10 % to 25 % higher than the value of the stoichiometric gas mixture under turbulence. The point was found at the stoichiometric gas concentration with very little amounts of dust. To prove the key findings of this work and for the establishment of a standardized procedure for the determination of safety characteristics of hybrid mixtures, an international round robin test was conducted with eleven participating facilities in seven countries. The results were comparable within a reasonable range and are presented in this dissertation in an extra chapter. Based upon the observations in this work a reliable solution for a new standardizable ignition source to determine the safety characteristics of hybrid dust-gas-mixtures is proposed. KW - Ignition Sources KW - Hybrid Mixtures KW - Explosions PY - 2023 SP - 1 EP - 132 AN - OPUS4-58905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -