TY - JOUR A1 - Woydt, Mathias A1 - Scholz, C. A1 - Burbank, J. A1 - Spaltmann, Dirk T1 - Slip-rolling resistant steel alloys up to P0max of 3,920 MPa N2 - Downsizing (power-to-weight ratio) and higher speeds lead to a rise in Hertzian contact pressures in combination with an increase in surface or oil temperatures. Under such conditions, commonly used bearing steels, such as 100Cr6, reach their limits, creating a demand for alternative slip-rolling resistant steel alloys. The present work therefore compares the slip-rolling performance of various steel types with Maraging- and PM-type steel alloys such as e.g. CSS-42L™, ASP2012, BIMAX42+, in the Hertzian contact pressure range up to P0max of 4 GPa. Through-hardened 100Cr6H (AISI 52100), case-hardened 20MnCr5 (AISI 5120H) and nitrogen alloyed Croni-dur30 (AMS 5898) still compete in terms of slip-rolling and wear resistance and load carrying capacity, whereas Maraging- and PM-type steel alloys offer superior strength and toughness properties. KW - Steel KW - Alloy KW - Slip-rolling KW - Friction KW - Wear rate KW - Contact pressure KW - 100Cr6 KW - BIMAX42 KW - CSS-42L KW - ASP20212 PY - 2012 DO - https://doi.org/10.1016/j.wear.2021.203707 VL - 474-475 SP - 203707 PB - Elsevier B.V. AN - OPUS4-52549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cappella, Brunero A1 - Spaltmann, Dirk A1 - Gee, M. T1 - Editorial: Tribology and Atomic Force Microscopy - Towards Single Asperity Contact N2 - The concept behind this Research Topic (RT) was to collect works, in which Atomic Force Microscopy (AFM) techniques are employed to study tribological phenomena and to push the resolution of measurements towards single asperity contact. Thanks to the direct determination of sample height with sub-nanometer resolution and the possibility of measuring local friction, AFM can be employed after a tribotest to detect topography and friction changes at the nanometer scale. Recently, efforts are being expended to use AFM cantilevers as tribometers, i.e., as probes altering the volume of suitable samples, thereby measuring tip and/or sample wear and friction at the nano/microscale. Thus, single asperity contact, friction, and wear can be investigated. Since friction and wear at the macroscale are the result of asperities interactions, such experiments are of great importance for better understanding of tribological processes. KW - Nanotribology KW - Friction KW - Wear KW - Single asperity KW - AFM PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571037 DO - https://doi.org/10.3389/fmech.2022.853934 SN - 2297-3079 VL - 8 SP - 1 EP - 2 PB - Frontiers Media CY - Lausanne AN - OPUS4-57103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Myshkin, N. A1 - Kovalev, Alexander A1 - Spaltmann, Dirk A1 - Woydt, Mathias T1 - Contact mechanics and tribology of polymer composites N2 - We review contact mechanics with emphasis on the rheological (time dependent) properties of polymers and their relations to surface roughness, material properties, and friction as well as wear behavior of rubbing polymer surfaces. The main concept of polymer mechanics related to tribology consists of three basic elements involved in friction: deformation resulting in the real area of contact of rough surfaces, contact adhesion, and shear and rupture of materials in the contact during the sliding friction. The results of classical work are included, which addresses the real contact area calculation and the description of adhesion interaction between rough surfaces. A brief review of experimental investigations concerning the surface characterization by means of bearing curves, the intermolecular force interaction using the adhesion parameter, the effect of temperature on the real contact area, the formation of transferred polymer film during friction, and tribological behavior of ultrathin polymer layers are presented and their implications discussed. KW - Surfaces and interfaces KW - Friction KW - Wear and lubrication KW - Mechanical properties KW - Microscopy KW - Properties and characterization PY - 2014 DO - https://doi.org/10.1002/APP.39870 SN - 0021-8995 SN - 1097-4628 VL - 131 IS - 3 SP - Article 39870, 1 EP - 9 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-30858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Santner, Erich A1 - Klaffke, Dieter A1 - Meine, Kerstin A1 - Polaczyk, Christoph A1 - Spaltmann, Dirk T1 - Demonstration of topography modification by friction processes and vice versa N2 - Contact formation and development are the basis of friction and wear modelling and understanding. Unanimously topography formation and development in friction contacts are regarded of highest importance for understanding and modelling friction processes. The frequently found running in behaviour of sliding contacts is—aside from the build up of reaction and transfer layers-at least partly caused by the topography development due to friction processes until a stable equilibrium state is reached. Experimental results of friction and topography measurements are presented which demonstrate the mutual modification of friction and contact topography. A special experimental set up with an AFM allowed to correlate the measured friction forces with the contact position and the topography at this point. In this way, friction force transitions and changes can be assigned to topography changes due to abrasion, adhesion and wear particle agglomeration. Contact surfaces with artificial regular structures have been prepared to avoid problems with topography and friction correlation due to the statistical nature of roughness on technical contact surfaces. The friction effects of roughness were simulated by etched ditches of defined width, depth and distance on silicon or metal surfaces. This allowed to explain the mutual influences of topography and friction. The effect of a single ‘asperity’ and of the 'roughness structures' could be demonstrated. Topography measurements with an AFM correlated with the friction force could help to understand friction changes without changing any parameter. KW - Friction KW - Roughness KW - Topography KW - Adhesion KW - Wear PY - 2006 DO - https://doi.org/10.1016/j.triboint.2005.04.029 SN - 0301-679X VL - 39 SP - 450 EP - 455 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-31744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manier, Charles-Alix A1 - Theiler, Geraldine A1 - Spaltmann, Dirk A1 - Woydt, Mathias A1 - Proß, E. A1 - Ziegele, H. T1 - Couches minces pour les contacts lubrifiés en slip-rolling (glissement-roulement) sous haute pression hertzienne initiale N2 - Le secteur automobile doit faire face actuellement à de nouveaux challenges au niveau de la construction allégée, des économies de carburant et des coûts. Ces exigences motivent la mise au point de tribosystèmes pouvant résister à des pressions de contact de plus en plus élevées avec de faibles coefficients de frottement. L'optimisation de systèmes existants par l'application de revêtements de surface performants représente une alternative intéressante. Ce texte présente les performances de couches minces dans des conditions d'essais de slip-rolling (roulement à composante de glissement) en présence de lubrifiants liquides. Après une première sélection à température ambiante, les revêtements les plus performants ont été testés à 120 °C. Il s'agit de revêtements DLC en carbone hydrogéné (a-C:H) et en carbone tétraédrique (ta-C) de dernières générations ainsi qu'un nouveau système « revêtement/substrat ». Certains des revêtements DLC développés récemment sont résistants en slip-rolling au moins jusq'’à 10 millions de cycles à 120 °C dans l'huile moteur sous des pressions hertziennes de contact de P0max = 2600 / 2940 MPa. De plus, le nouveau système revêtement Zr(C,N)x/substrat peut résister au moins à 1 million de cycles sous des pressions hertziennes initiales de contact allant jusqu'à P0max = 3500 MPa et à des températures de lubrifiant d'au moins 120 °C. ----------------------------------------------------------------------------------------------------------------------------------------------- The light-weight approach and fuel economy targets in today's automotive engineering require tribosystems, which can withstand higher contact pressures associated with low coefficients of friction. The application of surface coatings represents one approach among others. This paper presents thin film coatings performances in a bench mark test procedure exerting slip-rolling conditions in the presence of liquid lubricants. After a first selection at room temperature, the most resistant coatings were evaluated at 120 °C. These are newly developed DLC coatings (a-C:H & ta-C) as well as a novel coating-substrate system. Some of the newly developed DLC-coatings are slip-rolling resistant for at least up to 10 million cycles at 120 °C oil temperature) under Hertzian contact pressures of P0max = 2600 / 2940 MPa. Furthermore, this novel Zr-based thin film coating can withstand at least 1 million cycles under initial Hertzian contact pressures of up to P0max = 3500 MPa and oil temperatures of at least 120 °C associated with low coefficients of friction under mixed/boundary conditions. KW - Thin film coatings KW - DLC KW - Zr(CN) KW - ta-C KW - Slip-rolling KW - Mixed lubrication KW - Couches minces KW - Lubrification mixte PY - 2009 DO - https://doi.org/10.1051/mattech/2009051 SN - 0032-6895 SN - 1778-3771 VL - 97 IS - 6 SP - 397 EP - 409 CY - Paris AN - OPUS4-31747 LA - fra AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Christian A1 - Spaltmann, Dirk A1 - Woydt, Mathias T1 - Slip-rolling resistance of thin films and high toughness steel substrates under high Hertzian contact pressures N2 - Diamond-like carbon (DLC) coatings are perceived as part of a strategy for low frictional tribosystems. Especially the automotive industry anticipates a benefit in applying such coatings in association with the lightweight construction of mechanical parts, for instance in gear and engine components. Therefore, in previous investigations amorphous carbon (a-C) and tetragonal amorphous carbon (ta-C) coatings were inspected. For up to ten million cycles at Hertzian contact pressures P0max of 2.9 GPa it was shown that these coatings are slip-rolling resistant not only at room temperature in the presence of unaddivated paraffin oil, but also up to 120 °C oil temperature. The steel substrates in this investigation were made of the hardened and tempered steels 100Cr6H and Cronidur 30. The aim of the current work is manifold. The Hertzian contact pressures should be increased up to P0max of 4.2 GPa by using new steel metallurgies as substrates for thin film coatings. These steel metallurgies are also assessed, if they can compete as uncoated couples. Two high toughness spring steels and an ultra-high toughness aerospace steel were tested in a twin disc tribometer of the Amsler type as well as in an Optimol 2Disk test rig under mixed/boundary conditions in a factory fill SAE 0W-30 engine oil. Different factors such as influences of the lubrication, surface chemistry and wear behaviour were investigated. KW - Slip-rolling KW - High toughness steel KW - DLC KW - ZrCN KW - Thin film coating KW - High pressure PY - 2011 DO - https://doi.org/10.1016/j.wear.2011.01.005 SN - 0043-1648 VL - 270 IS - 7-8 SP - 506 EP - 514 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-23286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spaltmann, Dirk A1 - Löhr, Manuel A1 - Effner, Ute A1 - Scholz, Christian A1 - Manier, Charles-Alix A1 - Woydt, Mathias T1 - Wälzbeständigkeit von diamantartigen Kohlenstoffschichten KW - DLC KW - ZrCN KW - Wälzen KW - Technische Beschichtungen KW - Null-Verschleiß PY - 2011 SN - 1619-5558 VL - 2 IS - 37 SP - 16 EP - 24 PB - Diamond Business KG CY - Bamberg AN - OPUS4-23947 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spaltmann, Dirk A1 - Woydt, Mathias T1 - An alternative approach to simulating an entire particle erosion experiment N2 - In the present work an approach is presented which combines various aspects of the former models with probability considerations. It is used to simulate the impact of more than one billion Alumina particles onto a steel substrate. This approach permits the simulation of an entire erosion experiment on an average PC within about six hours. KW - Particle erosion KW - Wear KW - DEM KW - FEM KW - Monte-Carlo simulation KW - Alumina PY - 2018 DO - https://doi.org/10.3390/lubricants6010029 VL - 6 IS - 29 SP - 1 EP - 11 PB - MDPI AN - OPUS4-44542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Azouigui, S. A1 - Silvestri, Z. A1 - Zerrouki, C. A1 - Bouhtiyya, S. A1 - Plimmer, M.D. A1 - Spaltmann, Dirk A1 - Kovalev, Alexander A1 - Woydt, Mathias A1 - Pinot, P. T1 - Angle resolved scattering as a tribological investigation tool for surface characterization N2 - This paper shows how Angle-Resolved Scattering can reveal wear on engineered surfaces. The samples studied, three discs made of steel 100Cr6H used in gear wheels in the automotive industry, were assessed after they had undergone ball-on-disc tests. Scattering maps recorded for spatial frequencies from 0.1 µm-1 to 2.7 µm-1 show a contrast inversion around 0.36 µm-1 revealing the wear trace. Besides measurements of rms roughness, where mean values are 20 nm and 24 nm depending on the locations considered, stationarity and isotropy, we demonstrate the ability of the technique to reveal localized wear on this type of surface in a rapid, robust and convenient way. We show that the tool trace is influenced by the load magnitude rather than by the number of oscillation cycles and highlight the key role played by surface roughness in how the sample responds to wear tests. KW - Surface roughness KW - Angle-resolved scattering KW - Wear KW - Isotropy PY - 2015 DO - https://doi.org/10.1016/j.wear.2014.12.040 SN - 0043-1648 VL - 326-327 SP - 58 EP - 67 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-33021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Woydt, Mathias A1 - Burbank, J.-Th. A1 - Spaltmann, Dirk T1 - Generation of defined tribofilms and their stability under slip-rolling in a 2disk test rig N2 - In the present work it was shown that the performance of tribofilms which were generated in 2Disk test rigs on widely used reference steels during slip-rolling in the mixed/boundary lubrication regime at 120°C is compared to those created on alternative steels. KW - slip-rolling KW - 2Disk KW - friction KW - wear KW - tribofilms KW - additive KW - test method PY - 2018 DO - https://doi.org/10.1520/MPC20170078 SN - 2379-1365 SN - 2165-3992 VL - 7 IS - 3 SP - 213 EP - 225 PB - ASTM International CY - West Conshohocken, Pa. AN - OPUS4-46304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -