TY - JOUR A1 - Florian, Camilo A1 - Wonneberger, R. A1 - Undisz, A. A1 - Kirner, Sabrina V. A1 - Wasmuth, Karsten A1 - Spaltmann, Dirk A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Chemical effects during the formation of various types of femtosecond laser-generated surface structures on titanium alloy N2 - In this contribution, chemical, structural, and mechanical alterations in various types of femtosecond laser-generated surface structures, i.e., laser-induced periodic surface structures (LIPSS, ripples), Grooves, and Spikes on titanium alloy, are characterized by various surface analytical techniques, including X-ray diffraction and glow-discharge optical emission spectroscopy. The formation of oxide layers of the different laser-based structures inherently influences the friction and wear performance as demonstrated in oil-lubricated reciprocating sliding tribological tests (RSTTs) along with subsequent elemental mapping by energy-dispersive X-ray analysis. It is revealed that the fs-laser scan processing (790 nm, 30 fs, 1 kHz) of near-wavelength-sized LIPSS leads to the formation of a graded oxide layer extending a few hundreds of nanometers into depth, consisting mainly of amorphous oxides. Other superficial fs-laser-generated structures such as periodic Grooves and irregular Spikes produced at higher fluences and effective number of pulses per unit area present even thicker graded oxide layers that are also suitable for friction reduction and wear resistance. Ultimately, these femtosecond laser-induced nanostructured surface layers efficiently prevent a direct metal-to-metal contact in the RSTT and may act as an anchor layer for specific wear-reducing additives contained in the used engine oil. KW - Laser-induced oxide layer KW - Laser-induced periodic surface strctures (LIPSS) KW - Femtosecond laser processing KW - Tribology KW - Surface processing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505660 DO - https://doi.org/10.1007/s00339-020-3434-7 SN - 0947-8396 SN - 1432-0630 VL - 126 IS - 4 SP - 266 PB - Springer Nature Switzerland AG AN - OPUS4-50566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Höhm, S. A1 - Koter, Robert A1 - Hartelt, Manfred A1 - Spaltmann, Dirk A1 - Pentzien, Simone A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium N2 - Sub-100-nm laser-induced periodic surface structures (LIPSS) were processed on bulk titanium (Ti) surfaces by femtosecond laser pulse irradiation in air (30 fs pulse duration, 790 nm wavelength). The laser peak fluence, the spatial spot overlap, and the number of overscans were optimized in a sample-scanning geometry in order to obtain large surface areas (5 mm × 5 mm) covered homogeneously by the LIPSS. The laser-processed regions were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). The friction coefficient of the nanostructured surfaces was tested during 1000 cycles under reciprocal sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel, both in paraffin oil and in engine oil used as lubricants. Subsequently, the corresponding wear tracks were qualified by OM, SEM, and energy dispersive X-ray analyses (EDX). The results of the tribological tests are discussed and compared to that obtained for near wavelength-sized fs-LIPSS, processed under somewhat different irradiation conditions. Some constraints for a beneficial effect of LIPSS on the tribological performance are provided. KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures, LIPSS KW - Friction KW - Wear KW - Nanostructures KW - Surface functionalization PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S0169433215026987 DO - https://doi.org/10.1016/j.apsusc.2015.11.019 SN - 0169-4332 SN - 1873-5584 VL - 374 SP - 190 EP - 196 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-35937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spaltmann, Dirk T1 - Trusted Qualification - On the need for procedures to harmonize tribological testing N2 - In order to shorten time to market of products and to support new developments, the European Community is funding a HORIZON 2020 project called i-TRIBOMAT. In the field of tribology, renowned institutions combine their testing and analytical capabilities to provide the respective services. The later will be offered in Europe via a Single-Entry Point (SEP). Due to this combination of services, a testbed is created consisting of more than 100 tribometers. Thus, a large variety of testers exists, either commercially available or in-house built. Each tester is optimised to simulate a specific tribological contact situation. Currently, there is no standard available for the design of such testers. Especially, the way forces (normal load, friction force) and distances (e.g. stroke, linear wear) are measured, recorded and pre-processed differs from type to type. These forces and distances are essential for the determination of wear/ wear rates and coefficients of friction (COF), the core results of tribo-tests. This matter is complicated by the fact that e.g. for reciprocating motion, there are at least four different ways to determine COF. Depending on the testing conditions, these ways can lead to considerably different results. Currently, it is not obligatory to specify the method used for determining the COF. In order to make data comparable, there is a need for measures which ensure that each tribometer is delivering similar, at best the same results under the same test conditions, irrespective of its manufacturer, design, location, determination method and even operator. The way forward are improved Round-Robin tests. First results and other challenges faced by creating comparable tribological data will be considered in the present contribution. T2 - LUBMAT 2020 CY - Online meeting DA - 15.12.2020 KW - I-TRIBOMAT KW - Tribo-tests KW - Tribological data PY - 2020 AN - OPUS4-51981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Woydt, Mathias A1 - Scholz, C. A1 - Burbank, J. A1 - Spaltmann, Dirk T1 - Slip-rolling resistant steel alloys up to P0max of 3,920 MPa N2 - Downsizing (power-to-weight ratio) and higher speeds lead to a rise in Hertzian contact pressures in combination with an increase in surface or oil temperatures. Under such conditions, commonly used bearing steels, such as 100Cr6, reach their limits, creating a demand for alternative slip-rolling resistant steel alloys. The present work therefore compares the slip-rolling performance of various steel types with Maraging- and PM-type steel alloys such as e.g. CSS-42L™, ASP2012, BIMAX42+, in the Hertzian contact pressure range up to P0max of 4 GPa. Through-hardened 100Cr6H (AISI 52100), case-hardened 20MnCr5 (AISI 5120H) and nitrogen alloyed Croni-dur30 (AMS 5898) still compete in terms of slip-rolling and wear resistance and load carrying capacity, whereas Maraging- and PM-type steel alloys offer superior strength and toughness properties. KW - Steel KW - Alloy KW - Slip-rolling KW - Friction KW - Wear rate KW - Contact pressure KW - 100Cr6 KW - BIMAX42 KW - CSS-42L KW - ASP20212 PY - 2012 DO - https://doi.org/10.1016/j.wear.2021.203707 VL - 474-475 SP - 203707 PB - Elsevier B.V. AN - OPUS4-52549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ayerdi, J. J. A1 - Aginagalde, A. A1 - Llavori, I. A1 - Bonse, Jörn A1 - Spaltmann, Dirk A1 - Zabala, A. T1 - Ball-on-flat linear reciprocating tests: Critical assessment of wear volume determination methods and suggested improvements for ASTM N2 - In the present work it was shown the importance of the correct selection, implementation, and reporting of wear volume computation method and quanitifies the potential errors. KW - Wear KW - Sliding KW - Surface KW - Analysis KW - ASTM KW - D7755-11 PY - 2021 DO - https://doi.org/10.1016/j.wear.2021.203620 VL - 470-471 SP - 3620 AN - OPUS4-52080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kröll, Mirco A1 - Grundtner, R. A1 - Pagano, F. A1 - Nyberg, E. A1 - Heino, V. A1 - Spaltmann, Dirk A1 - Gradt, Thomas T1 - Auswirkungen von vereinheitlichten Prozeduren auf tribologische Versuche N2 - Anerkannte Institutionen stellen ihre Kompetenzen auf dem Gebiet tribologischer Charakterisierungen Industrie und Forschung zur Verfügung (https://www.i-tribomat.eu/). Ein Aspekt hierbei ist eine tribologische Datenbank. Um die nötige Qualität der Daten sicherzustellen, sind vereinheitlichte Prozeduren erforderlich, in deren Auswirkungen dieser Vortrag einen Einblick gibt. T2 - 62. Tribologie-Fachtagung der Gesellschaft für Tribologie e. V. CY - Online meeting DA - 27.09.2021 KW - Datenbank KW - Tribologische Daten KW - Europäisches Tribologie-Zentrum PY - 2021 SN - 978-3-9817451-6-0 VL - 15 SP - 15/1 EP - 15/4 AN - OPUS4-53430 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kröll, Mirco A1 - Grundtner, R. A1 - Newrkla, K. A1 - Spaltmann, Dirk A1 - Pagano, F. A1 - Pinedo, B. A1 - Nyberg, E. A1 - Söderfjäll, M. A1 - Heino, V. A1 - Ronkainen, H. ED - Topolovec-Miklozic, K. ED - Pauschitz, A. ED - Fatemi, A. T1 - Trusted tribological materials characterisation services N2 - Renowed institutions in various European countries combine their tribo-testing as well as analytical and characterisation capabilities for the European Tribology Centre. This foundation of one of the largest Open Innovative Test Beds for tribological services, the aim of the European Horizon 2020 project i-TRIBOMAT, places certain demands on the comparability of the test equipment and execution process. T2 - 23rd International Colloquium Tribology at TAE CY - Online meeting DA - 25.01.2022 KW - Tribology KW - i-TRIBOMAT KW - Characterisation KW - Digitalisation KW - Harmonisation KW - Round robin tests KW - Interlaboratory tests PY - 2022 SN - 978-3-8169-3547-6 SP - 503 EP - 505 PB - Narr Francke Attempto Verlag CY - Tübingen AN - OPUS4-54293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spaltmann, Dirk T1 - Tribological performance of FS-laser-induced periodic surface structures on titanium alloy against different counter-body materials using a ZDDP lubricant additive N2 - In this study the so-called laser-induced periodic surface structures (LIPSS, ripples) were produced on titanium alloy (Ti6Al4V) surfaces upon scan processing in air by a Ti:sapphire femtosecond (fs) laser. The tribological performance of the resulting surfaces was qualified in linear reciprocating sliding tribological tests (RSTT) against balls made of different materials (100Cr6 steel/Al2O3/Si3N4) using different oil-based lubricants. The admixture of the additive 2-ethylhexylzinc-dithiophosphate (ZDDP) to a base oil containing only anti-oxidants and temperature stabilizers disclosed the synergy of the additive with the laser-oxidized nanostructures. This interplay between the laser-textured sample topography and the local chemistry in the tribological contact area reduces friction and wear. T2 - 7th World Tribology Congress - WTC 2022 CY - Lyon, France DA - 11.07.2022 KW - Lubricant additives KW - Laser-induced periodic surface structures (LIPSS) KW - Wear KW - Friction PY - 2022 AN - OPUS4-55318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kröll, Mirco A1 - Grundtner, R. A1 - Newrkla, K. A1 - Pagano, F. A1 - Nyberg, E. A1 - Heino, V. A1 - Spaltmann, Dirk T1 - On the quality of wear volume data of laboratory model tests N2 - European tribological research organisations unify their capabilities for the European Tribology Centre (https://www.i-tribomat.eu/). At its core is a database, which data are made comparable and trusted via harmonised procedures for their generation. This contribution will focus on wear volume data. T2 - 63. Tribologie-Fachtagung 2022 CY - Göttingen, Germany DA - 26.09.2022 KW - Tribology KW - i-TRIBOMAT KW - Characterisation KW - Digitalisation KW - Harmonisation KW - Round robin tests KW - Interlaboratory tests KW - Wear volume PY - 2022 SN - 978-3-9817451-7-7 SP - 192 EP - 194 PB - Gesellschaft für Tribologie e.V. AN - OPUS4-55881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herr, M. A1 - Borras, F. X. A1 - Spaltmann, Dirk A1 - Kröll, Mirco A1 - Pirker, F. A1 - Cihak-Bayr, U. T1 - How to create trusted tribological characterization data of soft polymers as input for FEM simulations? N2 - Soft polymers such as the investigated polyurethane, characterized by low Young’s moduli and prone to high shear deflection, are frequently applied in pneumatic cylinders. Their performance and lifetime without external lubrication are highly determined by the friction between seal and shaft and the wear rate. FEM simulation has established itself as a tool in seal design processes but requires input values for friction and wear depending on material, load, and velocity. This paper presents a tribological test configuration for long stroke, reciprocating movement, allowing the generation of data which meet the requirements of input parameters for FEM simulations without the geometrical influences of specific seal profiles. A numerical parameter study, performed with an FEM model, revealed the most eligible sample geometry as a flat, disc-shaped sample of the polymer glued on a stiff sample holder. At the same time, the study illustrates that the sensitivity of the contact pressure distribution to Poisson’s ratio and CoF can be minimized by the developed and verified setup. It ensures robust, reliable, and repeatable experimental results with uniform contact pressures and constant contact areas to be used in databases and FEM simulations of seals, enabling upscaling from generically shaped samples to complex seal profiles. KW - Tribologie KW - FEM KW - Simulation KW - Polymere KW - Charakterisierung KW - i-TRIBOMAT KW - Modellierung KW - Polyurethan KW - Dichtungen KW - Upscaling PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567683 DO - https://doi.org/10.3390/ma16010131 SN - 1996-1944 VL - 16 IS - 1 SP - 1 EP - 20 PB - MDPI CY - Basel AN - OPUS4-56768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -