TY - CONF A1 - Stegemann, Robert A1 - Sonntag, Nadja A1 - Kreutzbruck, Marc A1 - Skrotzki, Birgit ED - Brune, M. ED - Buffière, J.Y. ED - Morel, F. ED - Nadot, Y. T1 - Self-magnetic-leakage field detection using magneto-optical sensor technique T2 - FDMDII-JIP 2014 - 14th International spring meeting - MATEC Web of conferences (Proceedings) N2 - Measurement of spontaneous magnetic stray field signals has been reported to be a promising tool for capturing macro-scale information of deformation states, defects and stress concentration zones in a material structure. This paper offers a new method for self-magnetic leakage field detection using a magneto-optical (MO) hand-held microscope. Its sensor has a dynamic field range between ±0.05 and ±2 kA/m and a lateral optical resolution of approx. 10 µm. We examined flat tensile test specimens of metastable austenitic steel AISI 304. Static tensile tests were repeatedly interrupted at various predetermined states of strain and the magnetic information was measured by the MO system. Comparative measurements using a high-precision magnetic field GMR-sensor, verify the outstanding capability of the MO microscope regarding spatial resolution of magnetic fields. T2 - FDMDII-JIP 2014 - 14th International spring meeting CY - Paris, France DA - 06.11.2014 KW - Magneto-optical sensor KW - Metal magnetic memory KW - GMR KW - NDT PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-326911 SN - 978-2-7598-1274-5 DO - https://doi.org/10.1051/matecconf/20141204010 N1 - Serientitel: Materials science, Engineering and Chemistry – Series title: Materials science, Engineering and Chemistry VL - 12 SP - 04010-1 EP - 04010-3 PB - EDP Sciences AN - OPUS4-32691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pelkner, Matthias A1 - Stegemann, Robert A1 - Sonntag, Nadja A1 - Pohl, Rainer A1 - Kreutzbruck, Marc T1 - Benefits of GMR sensors for high spatial resolution NDT applications T2 - AIP Conference Proceedings N2 - Magneto resistance sensors like GMR (giant magneto resistance) or TMR (tunnel magneto resistance) are widely used in industrial applications, examples are position measurement and read heads of hard disk drives. However, in case of non-destructive testing (NDT) applications these sensors, although their properties are outstanding like high spatial resolution, high field sensitivity, low cost and low energy consumption, never reached a technical transfer to an application beyond sci-entific scope. This paper deals with benefits of GMR/TMR sensors in terms of high spatial resolution testing for different NDT applica-tions. The first example demonstrates the preeminent advantages of MR-elements compared with conventional coils used in eddy current testing (ET). The probe comprises one-wire excitation with an array of MR elements. This led to a better spatial resolution in terms of neighboring defects. The second section concentrates on MFL-testing (magnetic flux leakage) with active field excitation during and before test-ing. The latter illustrated the capability of highly resolved crack detection of a crossed notch. This example is best suited to show the ability of tiny magnetic field sensors for magnetic material characterization of a sample surface. Another example is based on characterization of samples after tensile test. Here, no external field is applied. The magnetization is only changed due to external load and magnetostriction leading to a field signature which GMR sensors can resolve. This gives access to internal changes of the magnetization state of the sample under test. T2 - QNDE 2017 CY - Provo, Utah, USA DA - 16.07.2017 KW - GMR KW - Non-destructive testing KW - Sensor arrays KW - Spatial resolution PY - 2018 SN - 978-0-7354-1644-4 DO - https://doi.org/10.1063/1.5031535 SN - 0094-243X VL - 1949 SP - UNSP 040001, 1 EP - 10 AN - OPUS4-45050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stegemann, Robert A1 - Cabeza, Sandra A1 - Pelkner, Matthias A1 - Lyamkin, Viktor A1 - Sonntag, Nadja A1 - Bruno, Giovanni A1 - Skrotzki, Birgit A1 - Kreutzbruck, Marc T1 - Evaluation of high spatial resolution imaging of magnetic stray fields for early damage detection T2 - AIP Conference Proceeding N2 - The paper discusses the evaluation of elastic and plastic strain states in two low-carbon steels of the same steel group with high spatial resolution GMR (giant magneto resistance) sensors. The residual stress distributions of tungsten inert gas welded plates were determined by means of neutron diffraction as a reference. The normal component of local residual magnetic stray fields arise in the vicinity of the positions of maximum stress. The experiments performed on flat tensile specimen indicate that the boundaries of plastic deformations are a source of stray fields. The spatial variations of magnetic stray fields for both the weld and the tensile samples are in the order of the earths magnetic field. T2 - 43rd Annual Review of Progress in Quantitative Nondestructive Evaluation, Volume 36 CY - Atlanta, Georgia, USA DA - 17.07.2016 KW - Plastic deformation KW - GMR KW - Neutron diffraction KW - Residual stress KW - Microstructure KW - Low carbon steel KW - TIG weld PY - 2017 SN - 978-0-7354-1474-7 DO - https://doi.org/10.1063/1.4974688 SN - 0094-243X VL - 1806 IS - 1 SP - Article UNSP 110010-1 EP - 10 PB - AIP Publishing CY - Melville, NY 11747 AN - OPUS4-39279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -