TY - JOUR A1 - Recknagel, Sebastian A1 - Koch, Matthias A1 - Köppen, Robert A1 - Buttler, Sabine A1 - Penk, Sibylle A1 - Mauch, Tatjana A1 - Sommerfeld, Thomas A1 - Witt, Angelika T1 - Development of certified reference materials for the determination of cadmium and acrylamide in cocoa JF - Analytical and bioanalytical chemistry N2 - Since 1 January 2019 a maximum content of 0.6 mg kg−1 cadmium (Cd) in cocoa powder sold to the final consumer or as an ingredient in sweetened cocoa powder sold to the final consumer (drinking chocolate) is set by the Commission Regulation (EU) No. 488/2014. Monitoring compliance with the specified limit value requires analytical measuring methods and reference materials for quality control. However, suitable certified reference materials intended for quality assurance and quality control purposes are still lacking. Therefore, three cocoa reference materials (ERM®-BD513, ERM®-514 and ERM®-515) were developed according to the requirements of ISO 17034 and the recommendations of ISO Guide 35. The whole process of reference material development, including material preparation, assessment of homogeneity and stability, characterisation and value assignment is presented. The assignment of the certified mass fractions was based upon an interlaboratory comparison study involving 19 expert laboratories for Cd and 12 laboratories for acrylamide. The certified mass fractions and expanded uncertainties (k = 2) of the reference materials were (0.181 ± 0.009) mg kg−1 Cd (ERM®-BD513), (0.541 ± 0.024) mg kg−1 Cd (ERM®-BD514) and (0.690 ± 0.029) mg kg−1 Cd (ERM®-BD515). Acrylamide contents are given for information. KW - Certified reference material KW - Quality assurance KW - Cocoa KW - Cadmium KW - Acrylamide KW - Food analysis PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508656 DO - https://doi.org/10.1007/s00216-020-02719-0 SN - 1618-2642 SN - 1618-2650 VL - 412 IS - 19 SP - 4659 EP - 4668 PB - Springer CY - Berlin AN - OPUS4-50865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland A1 - Altmann, Korinna A1 - Sommerfeld, Thomas A1 - Braun, Ulrike T1 - Quantification of microplastics in a freshwater suspended organic matter using different thermoanalytical methods – outcome of an interlaboratory comparison JF - Journal of Analytical and Applied Pyrolysis N2 - A sedimented freshwater suspended organic matter fortified with particles of polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) was employed in an interlaboratory comparison of thermoanalytical methods for microplastics identification and quantification. Three laboratories performed pyrolysis gas chromatography-mass spectrometry (Py-GC-MS), three others provided results using thermal extraction desorption followed by gas chromatography coupled to mass spectrometry (TED-GC-MS). One participant performed thermogravimetry-infrared spectroscopy (TGA-FTIR) and two participants used thermogravimetry coupled to mass spectrometry (TGA-MS). Further participants used differential scanning microscopy (DSC), a procedure based on micro combustion calorimetry (MCC) and a procedure based on elemental analysis. Each participant employed a different combination of sample treatment, calibration and instrumental Settings for polymer identification and quantification. Though there is obviously room for improvements regarding the between-laboratory reproducibility and the harmonization of procedures it was seen that the participants Performing Py-GC-MS, TED-GC-MS, and TGA-FTIR were able to correctly identify all polymers and to report reasonable quantification results in the investigated concentration range (PE: 20.0 μg/mg, PP: 5.70 μg/mg; PS: 2.20 μg/mg, PET: 18.0 μg/mg). Although for the other methods limitations exists regarding the detection of specific polymers, they showed potential as alternative approaches for polymer quantification in solid environmental matrices. KW - Interlaboratory comparison KW - Microplastics KW - Suspended organic matter KW - Pyrolysis PY - 2020 DO - https://doi.org/10.1016/j.jaap.2020.104829 VL - 148 SP - 1 EP - 6 PB - Elsevier B.V. AN - OPUS4-50977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -