TY - JOUR A1 - Nofz, Marianne A1 - Dörfel, Ilona A1 - Sojref, Regine A1 - Wollschläger, Nicole A1 - Mosquera Feijoo, Maria A1 - Schulz, Wencke A1 - Kranzmann, Axel T1 - Thin Sol-Gel Alumina Coating as Protection of a 9% Cr Steel Against Flue Gas Corrosion at 650 °C JF - Oxidation of Metals N2 - Samples of sol-gel alumina coated and uncoated P92 steel were exposed to flue gas at 650 °C for 300 h. As result of this treatment a 50 µm thick bi-layered oxide scale had formed on the surface of the uncoated sample. Below the scale a 40 µm thick inner oxidation zone was detected. In contrast, the porous, micron thick alumina coating enabled the formation of a chromium oxide scale with a thickness of some nanometers at the interface between steel substrate and coating. In this case high temperature corrosion of the steel was prevented so far. KW - Steel KW - Oxide coatings KW - High-temperature corrosion KW - TEM KW - SEM PY - 2018 DO - https://doi.org/10.1007/s11085-017-9799-0 SN - 0030-770X SN - 1573-4889 VL - 89 IS - 3-4 SP - 453 EP - 470 PB - Springer AN - OPUS4-44472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sojref, Regine A1 - Nofz, Marianne A1 - Dörfel, Ilona A1 - Schulz, Wencke A1 - Wollschläger, Nicole A1 - Kranzmann, Axel T1 - Thin and porous sol-gel alumina coatings on a 9% Cr steel as a protection against high-temperature corrosion in power plants N2 - In order to reduce CO2 emissions fossil fuelled power stations with high combustion efficiency are being developed. The increase of the operating temperature, a common way to improve combustion efficiency, leads to enhanced corrosion of heat exchange steel tubes in the power plants. Within the framework of the European project “Production of Coatings for New Efficient and Clean Coal Power Plant Materials” (POEMA)", high temperature corrosion protection coatings are now under investigation. Thin porous sol-gel alumina films are promising candidate coating materials. Coatings were prepared by applying boehmite sols on grinded steel P92 and subsequent heat treatments at temperatures up to 650 °C. Thus a porous layer of worm-like particles was formed consisting of nano-crystallites and amorphous alumina. A dense interface with satisfying adhesion resulted from diffusion of chromium and iron ions out of the steel into the porous coating. However, the film locally exhibited some cracks caused by steep edges in the grinded steel surface. An appropriate substrate pretreatment should avoid this problem. The protection of the steel relies on the barrier function of the alumina coating and the formation of a dense chromia layer at the steel surface. T2 - ICC6 6th International Congress on Ceramics CY - Dresden, Germany DA - 21.08.2016 KW - High-temperature corrosion KW - Alumina KW - Chromium PY - 2016 AN - OPUS4-38354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Bäßler, Ralph T1 - Study of Al2O3 Sol-Gel Coatings on X20Cr13 in Artificial North German Basin Geothermal Water at 150 °C JF - Coatings N2 - Al2O3 has been widely used as a coating in industrial applications due to its excellent chemical and thermal resistance. Considering high temperatures and aggressive mediums exist in geothermal systems, Al2O3 can be a potential coating candidate to protect steels in geothermal applications. In this study, γ-Al2O3 was used as a coating on martensitic steels by applying AlOOH sol followed by a heat treatment at 600 °C. To evaluate the coating application process, one-, two-, and three-layer coatings were tested in the artificial North German Basin (NGB), containing 166 g/L Cl−, at 150 °C and 1 MPa for 168 h. To reveal the stability of the Al2O3 coating in NGB solution, three-layer coatings were used in exposure tests for 24, 168, 672, and 1296 h, followed by surface and cross-section characterization. SEM images show that the Al2O3 coating was stable up to 1296 h of exposure, where the outer layer mostly transformed into boehmite AlOOH with needle-like crystals dominating the surface. Closer analysis of cross-sections showed that the interface between each layer was affected in long-term exposure tests, which caused local delamination after 168 h of exposure. In separate experiments, electrochemical impedance spectroscopy (EIS) was performed at 150 °C to evaluate the changes of coatings within the first 24 h. Results showed that the most significant decrease in the impedance is within 6 h, which can be associated with the electrolyte penetration through the coating, followed by the formation of AlOOH. Here, results of both short-term EIS measurements (up to 24 h) and long-term exposure tests (up to 1296 h) are discussed. KW - Al2O3 KW - Geothermal KW - Martensitic steels KW - Behmite KW - Corrosion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525551 DO - https://doi.org/10.3390/coatings11050526 SN - 2079-6412 VL - 11 IS - 5 SP - 526 PB - MDPI CY - Basel AN - OPUS4-52555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sojref, Regine A1 - Güther, Wolfgang T1 - Solvent-based redispersion of fine (<200 nm) corundum powder pre-milled in water T2 - ECerS XII - 12th Conference of the European ceramic society (Proceedings) T2 - ECerS XII - 12th Conference of the European ceramic society CY - Stockholm, Sweden DA - 2011-06-19 KW - Powder processing KW - Redispersion KW - Tape casting KW - Corundum KW - Hydrophobization PY - 2011 SP - 1 EP - 4 AN - OPUS4-25379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Dreßler, Martin A1 - Hünert, Daniela A1 - Dörfel, Ilona A1 - Saliwan Neumann, Romeo T1 - Sol-gel alumina coatings for high-temperature corrosion protection of Ni-base alloy SC16 in water vapour containing atmosphere JF - Interceram N2 - Alumosols in combination with well dispersed corundum were successfully used to form up to 2.5 ìm thick coatings on the Ni-base alloy SC16. These coatings withstood heat treatments at 700 °C in a water vapour containing atmosphere. The heat treatment caused formation of delta-alumina in the coating and diffusion of chromium and titanium into the coating. KW - Alumina KW - Coating KW - Sol-gel KW - Corrosion KW - Protection PY - 2009 SN - 0020-5214 VL - 58 IS - 4 SP - 192 EP - 195 PB - DVS-Verl. CY - Düsseldorf AN - OPUS4-19726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aristia, Gabriela A1 - Bäßler, Ralph A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Kohl, Anka T1 - Short-term exposure tests of ɣ-Al2O3 Sol-gel coating on X20Cr13 in artificial geothermal waters with different pH JF - Geothermics N2 - The suitability of an Al2O3 coating for corrosion protection on X20Cr13 was evaluated in various artificial geothermal brines, focusing on the influence of different pH (4, 6 and 8) and their chemical compositions on the coating properties. All experiments were performed in the laboratory using autoclaves at 150 ◦C and 1 MPa in deaerated condition for 1 and 7 days. Results showed that the pH of geothermal waters is the most detrimental factor in the transformation of ɣ-Al2O3 and its protective abilities. Delaminations were found in the Coating exposed to geothermal brines with pH 4. FTIR spectra indicated a transformation of ɣ-Al2O3 to boehmite AlOOH after exposure to pH 4 and 6, and bayerite Al(OH)3 was formed after exposure to pH 8. Different Crystal structures of the hydrated Al2O3 also contribute to the stability of the coatings, observed by the SEM- EDX of the surface and cross-section of coatings. This study indicated that ɣ-Al2O3 sol-gel coating presents a promising aspect of corrosion protection in geothermal environment with a neutral pH. KW - Al2O3 KW - Corrosion KW - Coating KW - Martensitic steel PY - 2021 DO - https://doi.org/10.1016/j.geothermics.2021.102193 SN - 0375-6505 VL - 96 SP - 102193 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-52931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Nofz, Marianne A1 - Bäßler, Ralph A1 - Sojref, Regine A1 - Le, Quynh Hoa T1 - Preliminary Study on Al2O3 Sol-Gel Coating for Corrosion Protection of Martensitic Stainless Steel in Artificial Geothermal Water T2 - Proceedings Annual AMPP International Corrosion Conference 2021 N2 - Al2O3 coatings are often used as protective layers on steels against electrochemical and high-temperature corrosion because they are chemically inert and stable at elevated temperatures. This study presents preliminary work on the possibilities of using Al2O3 sol-gel coatings for corrosion protection of martensitic stainless steels in geothermal environments. Al2O3 sol-gel coatings were applied on UNS S42000, which is known to be susceptible to uniform and localized corrosion. The coated steel specimens were then tested in two types of artificial geothermal water, which simulate the geothermal fluids found in Sibayak (SBY), Indonesia, and North German Basin (NGB), Germany, respectively. SBY has pH 4 and 1.5 g/L of chloride ions, whereas NGB has a pH of 6 and 166 g/L of chloride ions. All experiments were carried out in autoclaves at 150 °C and 1 MPa under the deaerated condition. Evaluations were performed by investigating the surface profiles of both uncoated and coated steels before and after the corrosion test using a Laser Scanning Microscope (LSM) and Scanning Electron Microscope (SEM). Finally, Electrochemical Impedance Spectroscopy (EIS) was performed to compare the corrosion resistance of Al2O3 coated steels in SBY and NGB solutions. It was observed from the corrosion test that Al2O3 coatings are more suitable for use in the geothermal water with a higher pH. T2 - AMPP Annual International Corrosion Conference 2021 CY - Online Meeting DA - 19.04.2021 KW - Protective coating KW - Sol-gel coating KW - Geothermal KW - Martensitic steel KW - Corrosion PY - 2021 SP - 16777-01 EP - 16777-12 CY - Houston AN - OPUS4-52501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nofz, Marianne A1 - Dörfel, Ilona A1 - Sojref, Regine A1 - Wollschläger, Nicole A1 - Mosquera Feijoo, Maria A1 - Kranzmann, Axel T1 - Microstructure, smoothening effect, and local defects of alumina sol-gel coatings on ground steel JF - Journal of Sol-Gel Science and Technology N2 - Porous alumina films with thicknesses of a few microns were prepared via a dip-coating technique on steel P92. The coating is shown to protect the steel against massive corrosion, which is typical in the hot reactive environment of coal fired power plants. To mimic real conditions ground steel plates were coated with a boehmite-sol. This leads to an overall smoothing of the formerly rough surface. In the following short annealing step the inner porous construction with worm-like particles consisting of nano-crystallites and amorphous alumina is formed. Due to the simultaneous diffusion of chromium and iron ions out of the bulk steel material into the porous alumina coating, a dense interface with satisfactory adhesion is formed. However, the film exhibits few local defects like cracks or dense alumina nodules caused by steep edges in the ground surface or agglomeration of boehmite-sol components, respectively. Cracks especially have to be avoided. This problem can be overcome so far by slight modifications in the sol preparation process and surface treatment of the substrates. Nevertheless the results demonstrate the potential of sol-gel based alumina coatings as a time- and cost-saving protection type for commercial steel P92. KW - Alumina coating KW - Steel protection KW - TEM PY - 2017 DO - https://doi.org/10.1007/s10971-016-4188-8 SN - 0928-0707 VL - 81 IS - 1 SP - 185 EP - 194 PB - Springer CY - New York AN - OPUS4-40044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nofz, Marianne A1 - Dörfel, Ilona A1 - Sojref, Regine T1 - Microstructure of sol-gel derived corundum containing coatings JF - Thin solid films N2 - Up to ~ 3 µm thick alumina coatings on corundum ceramic, soda–lime–silica glass and Inconel718™ were produced from mixtures of boehmite sols and corundum suspensions. Transmission electron micrographs in combination with electron diffraction and energy dispersive X-ray spectroscopy served to identify crystallographic phases and to characterize the microstructure of the coatings. Using corundum ceramic as substrate the initially deposited boehmite transforms via transition aluminas to corundum while heating to 1200 °C. In the cases of glass and Inconel718™ thermal treatments up to 520 °C and 1100 °C, respectively, cause diffusion of ions from the substrates into the coatings. Thus additional oxide phases were formed. All coatings are free of cracks or delaminations and do not show any directed crystal growth. KW - Aluminium oxide KW - Coatings KW - Ceramics KW - Transmission electron microscopy KW - TEM KW - Sol-gel KW - Corundum KW - Alumina PY - 2007 SN - 0040-6090 VL - 515 IS - 18 SP - 7145 EP - 7154 PB - Elsevier CY - Amsterdam AN - OPUS4-15016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nofz, Marianne A1 - Dörfel, Ilona A1 - Sojref, Regine A1 - Saliwan Neumann, Romeo T1 - Microstructure of bare and sol-gel alumina-coated nickel-base alloy Inconel 625 after long-term oxidation at 900 °C JF - Oxidation of Metals N2 - Though Ni-base superalloys show a high oxidation and corrosion resistance, coatings could still improve these properties, especially if used at temperatures up to 1000 °C. Here, a coating was prepared by applying a boehmite-sol via dip-coating and a subsequent heat treatment at 600 °C for 30 minutes. To evaluate the coating, the oxidation behavior of bare and alumina coated Ni-base alloy Inconel 625 in air at 900 °C was studied for up to 2000 h. Electron microscopic studies of sample surfaces and cross-sections showed that (i) in the 3.5 µm – 6.3 mm thick scale formed on the bare alloy, Fe and Ni are located as fine precipitates at the grain boundaries of the chromia-rich scale, (ii) Ni and Ti are concentrated to a minor degree at the grain boundaries of the scale, too; and for the coated sample: (iii) the only 1.8 µm thick sol-gel alumina coating slows down the formation of chromia on the alloy surface and reduces the outward diffusion of the alloy constituents. The protective effect of the coating was evidenced by (i) diminished chromium diffusion at grain boundaries resulting in less pronounced string-like protrusions at the outer surface of the coated IN 625, (ii) formation of a Cr-enriched zone above the alloy surface which was thinner than the scale on the uncoated sample, (iii) no detectable Cr-depleted zone at the alloy surface, and (iv) a narrower zone of formation of Kirkendall pores. KW - Inconel 625 KW - High-temperature oxidation KW - Oxidation protection KW - Sol-gel coating PY - 2019 DO - https://doi.org/10.1007/s11085-019-09888-z SN - 0030-770X VL - 91 IS - 3-4 SP - 395 EP - 416 PB - Springer Science+Business Media AN - OPUS4-47665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feigl, Michael A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Kohl, Anka T1 - Improved wetting of bare and pre-coated steels by aqueous alumina sols for optimum coating success JF - Journal of sol gel science and technology N2 - Alumina coatings are a promising candidate for the protection of metals prone to high temperature corrosion. If applied via sol–gel process, especially by using so called aqueous modified Yoldas-sols, the deposition is hardened by differences in surface free energy of substrate and sol. In this paper the apparent surface properties of samples to be coated and sols were examined by contact angle measurements, IR-spectroscopy and tensiometry. The results imply, after consideration of possible uncertainties, the use of surface tension reducing 2-butanol already present during hydrolysis of the sols to obtain an easy and successful coating process. KW - Sol-gel KW - Wetting KW - Coating KW - IR-spectroscopy PY - 2010 DO - https://doi.org/10.1007/s10971-010-2232-7 SN - 0928-0707 SN - 1573-4846 VL - 55 IS - 2 SP - 191 EP - 198 PB - Kluwer Academic Publ. CY - Dordrecht AN - OPUS4-22602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goedecke, Caroline A1 - Sojref, Regine A1 - Nguyen, Thi Yen A1 - Piechotta, Christian T1 - Immobilization of photocatalytically active TiO2 nanopowder by high shear granulation JF - Powder Technology N2 - Nano-TiO2 powder is known to show high photocatalytic reactivity in the degradation of several organic pollutants. In thiswork, the powderwas fixed on the surface of SiO2 granuleswith the size of several micrometers using a high shear granulation process. Nanozirconia sol was applied as an inorganic binder. When the samples were tempered at 300 °C, they showed high stability in an aqueous solution for several hours. An energy dispersive x-ray spectroscopy (EDX) analysis confirmed that the cores and shells of the granules consisted solely of SiO2 and TiO2 respectively, and that ZrO2 was found throughout the whole granules. Methylene blue (MB) was employed as amodel systemto evaluate the photocatalytic activity of the TiO2 nanopowder and coated granules. Itwas shown that the TiO2-coated granules lead to the degradation ofMB under UV irradiation,whereas no effect was observed in the dark. After the Degradation experiments the granules could be recovered and they remained active for further applications. KW - Heterogeneous photocatalysis KW - Water treatment KW - Advanced oxidation KW - Nanozirconia KW - Methylene blue PY - 2017 DO - https://doi.org/10.1016/j.powtec.2017.06.025 SN - 0032-5910 SN - 1873-328X VL - 318 SP - 465 EP - 470 AN - OPUS4-41608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sojref, Regine A1 - Gemeinert, Marion A1 - Saliwan Neumann, Romeo T1 - High concentrated ethanolic alumina dispersions for ceramic film preparation T2 - 42nd Meeting of the German Colloid Society. Smart materials, foams, gels and microcapsules. T2 - 42nd Meeting of the German Colloid Society. Smart materials, foams, gels and microcapsules. CY - Aachen, Germany DA - 2005-09-26 PY - 2005 AN - OPUS4-11240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wollschläger, Nicole A1 - Nofz, Marianne A1 - Dörfel, Ilona A1 - Schulz, Wencke A1 - Sojref, Regine A1 - Kranzmann, Axel T1 - Exposition of sol-gel alumina-coated P92 steel to flue gas: Time-resolved microstructure evolution, defect tolerance, and repairing of the coating JF - Materials and Corrosion N2 - Technically relevant P92 steel (9% Cr) was coated with a micron-thick porous alumina layer prepared by sol-gel technique and treated with flue gas (60 CO2-30 H2O-2 O2-1 SO2-7 N2 (mole fraction in %)) at 650 ° to mimic an oxyfuelcombustion process. Local defects in the coating were marked using focused ion beam (FIB) technique and were inspected after exposition to hot flue gas atmosphere at 300, 800, and 1300 h, respectively. Local defects like agglomerated alumina sol particles tend to spall off from the coating uncovering the underlying dense chromia scale. Re-coating was found to restore the protection ability from oxidation when repeatedly treated with hot flue gas. Cracks and voids did not promote the local oxidation due to the formation of crystalline Mn/S/O species within and on top of the coating. The protective character of the steel-coating system is a result of (i) the fast formation of a dense chromia scale at the surface of sol-gel alumina-coated P92 steel bars in combination with (ii) the porous alumina coating acting as diffusion barrier, but also as diffusion partner in addition with (iii) fast Mn outward diffusion capturing the S species from flue gas. KW - Alumina coatings KW - Oxyfuel KW - Steel P92 KW - High temperature corrosion PY - 2018 DO - https://doi.org/10.1002/maco.201709712 SN - 1521-4176 SN - 0947-5117 SN - 0043-2822 VL - 69 IS - 4 SP - 492 EP - 502 PB - Wiley-VCH Verlag GmbH&Co. KGaA CY - Weinheim AN - OPUS4-45300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schmidt, Wolfram A1 - Ramirez Caro, Alejandra A1 - Sojref, Regine A1 - Mota Gassó, Berta ED - Greim, M. ED - Kusterle, W. ED - Teubert, O. T1 - Contribution of the coarse aggregates to rheology - effects of flow coefficient, particle size distribution, and volume fraction T2 - Rheologische Messungen an Baustoffen 2018 N2 - In order to observe the effect of the aggregate phases between 2 mm and 16 mm without overlap with rheological effects induced by the cement hy-dration and without interactions with a threshold fine sand particle size that affects both, paste and aggregates, rheological experiments were conducted on a limestone filler based paste mixed with aggregates up to 16 mm. Vari-ous aggregate fractions were blended and mixed with the replacement paste in different volumetric ratios. The dry aggregates’ flow coefficients were determined and compared to yield stress and plastic viscosity values at different aggregate volume fractions. The results indicated that the flow coefficient is not a suitable parameter to predict the performance of the aggregates in the paste. It was shown that the yield stress of pastes is largely determined by the blend of different aggregate fractions, while the plastic viscosity to large extend depends upon the coars-est aggregate fraction. Based on the results, ideal aggregate composition ranges for minimised yield stress are presented. For the plastic viscosity no such grading curves to achieve minimum values could be found, but high viscosity curves are identified. KW - Rheology KW - Flow Coefficient KW - Particle Size Distribution KW - Volume Fraction KW - Cement KW - Concrete KW - Reference Material KW - Limestone Filler PY - 2018 SN - 978-3-7469-1878-5 SP - 96 EP - 108 PB - tredition GmbH CY - Hamburg AN - OPUS4-44434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Davydenko, L. A1 - Nazarchuk, M. A1 - Nasiedkin, D. A1 - Plyuto, Y. A1 - Mosquera Feijoo, Maria A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Dörfel, Ilona A1 - Saliwan Neumann, Romeo A1 - Kranzmann, Axel A1 - Pérez, F.J. T1 - Anticorrosion hybrid AlPO4/Al2O3 coatings on the surface of P92 steel for oxy-fuel power plant application T2 - XtremeCOAT 2014 - Surface engineering for functional applications under extreme conditions T2 - XtremeCOAT 2014 - Surface engineering for functional applications under extreme conditions CY - Madrid, Spain DA - 2014-10-20 KW - Corrosion protection KW - Hybrid coatings KW - Boehmite KW - AlPO4 PY - 2014 SP - P 5, 1 EP - 2 AN - OPUS4-31453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Peplinski, Burkhard A1 - Müller, Ralf A1 - Wenzel, Klaus-Jürgen A1 - Sojref, Regine A1 - Schultze, Dietrich ED - Delhez, R. T1 - An X-ray powder diffration investigation of a fine-grained synthetic a-cordierite powder T2 - Proceedings of the sixth European powder diffraction conference T2 - 6th European Powder Diffraction Conference CY - Budapest, Hungary DA - 1998-08-22 KW - Alpha-cordierite KW - Indialite KW - Standard material KW - Back-filling specimen mount technique PY - 2000 SN - 0-87849-847-8 SN - 0255-5476 SP - 150 EP - 155 PB - Trans Tech Publ. CY - Uetikon-Zürich AN - OPUS4-1195 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sojref, Regine ED - Pratsinis, S. E. T1 - "Donut like flow pattern" attrition milling of submicron corundum powder T2 - Proceedings of the PARTEC 2004 T2 - PARTEC 2004 ; International Congress for Particle Technology CY - Nuremberg, Germany DA - 2004-03-16 PY - 2004 SP - 1 EP - 4(?) PB - Nürnberg Messe GmbH CY - Nürnberg AN - OPUS4-6950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sojref, Regine T1 - "Donut like flow pattern" attrition milling of submicron corundum powder T2 - PARTEC 2004 T2 - PARTEC 2004 CY - Nuremberg, Germany DA - 2004-04-16 PY - 2004 AN - OPUS4-5964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -