TY - JOUR A1 - Can, S. Z. A1 - Engin, B. A. A1 - İşleyen, A. A1 - Jotanovic, A. A1 - Acosta, O. A1 - Prina, P. A1 - Schvartz, M. A1 - Savić, M. A1 - Stojanović, M. A1 - Ahumada, D. A. A1 - Abella, J. P. A1 - Näykki, T. A1 - Saro-Aho, T. A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Rienitz, O. A1 - Noordmann, J. A1 - Pape, C. A1 - Towara, J. A1 - Kakoulides, E. A1 - Alexopoulos, C. A1 - Ketrin, R. A1 - Mardika, E. A1 - Komalasari, I. A1 - Elishian, C. A1 - Naujalis, E. A1 - Knašienė, B. A1 - Uribe, C. A1 - Carrasco, E. A1 - Zoń, A. A1 - Warzywoda, B. A1 - Stakheev, A. A1 - Dobrovolskiy, V. A1 - Stolboushkina, T. A1 - Glinkova, A. A1 - Sobina, E. A1 - Tabatchikova, T. A1 - Gažević, L. A1 - Paunovic, M. A1 - Jaćimović, R. A1 - Zuliani, T. A1 - Zambra, R. P. A1 - Napoli, R. T1 - Determination of elements in river water N2 - The need for quality assessment of anthropogenic impact on environmental pollution is increasing due to discharge from various industries, the use of chemicals in agriculture and the consumption of fossil fuels. Diminishing resources such as natural waters used for the cultivation of agricultural products, plant and animal habitats are under severe pollution pressure and are at constant risk. Several parameters, such as Pb, Cd, Ni, Hg were listed by Water Framework Directive in Directive(2008/105/EC) in the priority substances. Cadmium and Hg were identified as priority hazardous substances whereas As is an important contaminant for its potential toxicological and carcinogenic effects. An inter-comparison study is organised in EURAMET TC-MC in order to demonstrate the capability participants for measuring five elements in river water. The participants carried out measurements for analytes: Pb, Cd, Ni and As as mandatory elements, and Se as an optional one. Participants were asked to perform the measurements with respect to the protocol provided. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database https://www.bipm.org/kcdb/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - Metrology KW - Traceability KW - Toxic elements KW - River water PY - 2023 U6 - https://doi.org/10.1088/0026-1394/60/1A/08001 VL - 60 IS - 1a SP - 1 EP - 40 PB - BIPM & IOP Publishing Ltd AN - OPUS4-56786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yang, L. A1 - Vogl, Jochen A1 - Mann, J. A1 - Kraft, R. A1 - Vocke, R. A1 - Pramann, A. A1 - Eberhardt, J. A1 - Rienitz, O. A1 - Lee, K.-S. A1 - Lim, J. S. A1 - Sobina, E. A1 - Song, P. A1 - Wang, J. A1 - Mester, Z. A1 - Meija, J. T1 - Copper isotope delta measurements in high purity materials: CCQM-P213 pilot study N2 - Accurate and precise isotope ratio measurements of heavy elements are playing an increasinglyimportant role in modern analytical sciences and have numerous applications. Today, isotope ratio measurements are typically performed with two principal techniques: thermal ionization mass spectrometry (TIMS) and multiple collector-inductively coupled plasma mass spectrometry (MC-ICP-MS). To obtain accurate results by mass spectrometry, isotopic certified reference materials (iCRMs) are needed for mass bias correction and for the validation of the method used for analysis.Thus, it is of paramount importance to achieve measurement comparability of all data reported, and to assess measurement capability of each CRM producer/National Metrology Institute (NMI). Therefore, the international comparison (CCQM-P213) was performed to assess the analytical capabilities of NMIs for the accurate determination of copper isotope ratio delta values in high purity materials. The study was proposed by the coordinating laboratories, National Research Council Canada (NRC), National Institute of Standards and Technology (NIST), Bundesanstalt für Materialforschung und -prüfung (BAM) and Physikalisch-Technische Bundesanstalt (PTB), as an activity of the Isotope Ratio Working Group (IRWG) of the Consultative Committee for Amount of Substance - Metrology in Chemistry and Biology (CCQM). Participants included six NMIs and one designated institute (DI) from the six countries. Although no measurement method was prescribed by the coordinating laboratories, MC-ICP-MS with either standard-sample bracketing (SSB) or combined SSB with internal normalization (C-SSBIN) models for mass bias correction were recommended. Results obtained from the six NMIs and one DI were in good agreement. KW - Comparability KW - Traceability KW - Metrology KW - Isotope delta KW - Copper PY - 2023 U6 - https://doi.org/10.1088/0026-1394/60/1A/08019 VL - 60 IS - 1A SP - 1 EP - 23 PB - IOP Science AN - OPUS4-58040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Molloy, J. L. A1 - Winchester, M. R. A1 - Butler, T. A. A1 - Possolo, A. M. A1 - Rienitz, O. A1 - Roethke, A. A1 - Goerlitz, V. A1 - Caciano de Sena, R. A1 - Dominguez Almeida, M. A1 - Yang, L. A1 - Methven, B. A1 - Nadeau, K. A1 - Romero Arancibia, P. A1 - Bing, W. A1 - Tao, Z. A1 - Snell, J. A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Kotnala, R. K. A1 - Swarupa Tripathy, S. A1 - Elishian, C. A1 - Ketrin, R. A1 - Suzuki, T. A1 - Oduor Okumu, T. A1 - Yim, Y.-H. A1 - Heo, S. W. A1 - Min, H. S. A1 - Sub Han, M. A1 - Lim, Y. A1 - Velina Lara Manzano, J. A1 - Segoviano Regalado, F. A1 - Arvizu Torres, M. A1 - Valle Moya, E. A1 - Buzoianu, M. A1 - Sobina, A. A1 - Zyskin, V. A1 - Sobina, E. A1 - Migal, P. A1 - Linsky, M. A1 - Can, S. Z. A1 - Ari, B. A1 - Goenaga Infante, H. T1 - CCQM-K143 Comparison of Copper Calibration Solutions Prepared by NMIs/DIs N2 - CCQM-K143 is a key comparison that assesses participants’ ability to prepare single element calibration solutions. Preparing calibration solutions properly is the cornerstone of establishing a traceability link to the International System of Units (SI), and therefore should be tested in order to confirm the validity of CCQM comparisons of more complex materials. CCQM-K143 consisted of participants each preparing a single copper calibration solution at 10 g/kg copper mass fraction and shipping 10 bottled aliquots of that solution to the coordinating laboratory, the National Institute of Standards and Technology (NIST). The masses and mass fraction for the prepared solutions were documented with the submitted samples. The solutions prepared by all participants were measured at NIST by high performance inductively coupled plasma optical emission spectroscopy (HP-ICP-OES). The intensity measurements for copper were not mapped onto values of mass fraction via calibration. Instead, ratios were computed between the measurements for copper and simultaneous measurements for manganese, the internal standard, and all subsequent data reductions, including the computation of the KCRV and the degrees of equivalence, were based on these ratios. Other than for two participants whose measurement results appeared to suffer from calculation or preparation errors, all unilateral degrees of equivalence showed that the measured values did not differ significantly from the KCRV. These results were confirmed by a second set of ICP-OES measurements performed by the Physikalisch-Technische Bundesanstalt (PTB). CCQM-K143 showed that participants are capable of preparing calibration solutions starting from high purity, assayed copper metal. Similar steps are involved when preparing solutions for other elements, so it seems safe to infer that similar capabilities should prevail when preparing many different, single-element solutions. KW - Metrology KW - Primary calibration solution KW - Traceability PY - 2020 U6 - https://doi.org/10.1088/0026-1394/58/1A/08006 SN - 0026-1394 VL - 58 IS - 1A SP - 08006 PB - IOP Science CY - Cambridge AN - OPUS4-51983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sobina, E. A1 - Zimathies, Annett A1 - Prinz, Carsten A1 - Emmerling, Franziska A1 - de Santis Neves, R. A1 - Wang, H. A1 - Mizuno, K. A1 - Devoille, L. A1 - Steel, E. A1 - Ceyhan, A. A1 - Sadak, E. ED - Sobina, E. T1 - Final report of CCQM-K153 Measurement of Specific Adsorption A [mol/kg] of N-2 and Kr on nonporous SiO2 at LN temperature (to enable a traceable determination of the Specific Surface Area (BET) following ISO 9277) N2 - CCQM key comparison K-153 Measurement of Specific Adsorption A [mol/kg] of N-2 and Kr on nonporous SiO2 at LN temperature (to enable a traceable determination of the Specific Surface Area (BET) following ISO 9277) has been performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The objective of this key comparison is to compare the equivalency of the National Metrology Institutes (NMIs) and Designated Institutes (DIs) for the measurement of specific adsorption, BET specific surface area) of nonporous substances (sorbents, ceramics, catalytic agents, etc) used in advanced technology. In this key comparison, a commercial nonporous silicon dioxide was supplied as a sample. Eight NMIs participated in this key comparison, but only five NMI's have reported in time. All participants used a gas adsorption method, here nitrogen and (or) krypton adsorption at 77.3 K, for analysis according to the international standards ISO 15901-2 and 9277. In this key comparison, the degrees of equivalence uncertainties for specific adsorption nitrogen and krypton, BET specific surface area were established. KW - Nonporous SiO2 KW - Specific Adsorption of N-2 and Kr KW - BET specific surface area PY - 2019 U6 - https://doi.org/10.1088/0026-1394/56/1A/08013 VL - 56 IS - 1A SP - 08013 PB - IOP publishing Ltd CY - Bristol, UK AN - OPUS4-50358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Kipphardt, Heinrich A1 - Richter, Silke A1 - Bremser, Wolfram A1 - Arvizu Torres, M. A1 - Lara Manzano, J. A1 - Buzoianu, M. A1 - Hill, S. A1 - Petrov, P. A1 - Goenaga-Infante, H. A1 - Sargent, M. A1 - Fisicaro, P. A1 - Labarraque, G. A1 - Zhou, T. A1 - Turk, G. C. A1 - Winchester, M. A1 - Miura, T. A1 - Methven, B. A1 - Sturgeon, R. A1 - Jährling, R. A1 - Rienitz, O. A1 - Mariassy, M. A1 - Hankova, Z. A1 - Sobina, E. A1 - Krylov, A. I. A1 - Kustikov, Y. A. A1 - Smirnov, V. V. T1 - Establishing comparability and compatibility in the purity assessment of high purity zinc as demonstrated by the CCQM-P149 intercomparison N2 - For the first time, an international comparison was conducted on the determination of the purity of a high purity element. Participants were free to choose any analytical approach appropriate for their institute’s applications and services. The material tested was a high purity zinc, which had earlier been assessed for homogeneity and previously used in CCQM-K72 for the determination of six defined metallic impurities. Either a direct metal assay of the Zn mass fraction was undertaken by EDTA titrimetry, or an indirect approach was used wherein all impurities, or at least the major ones, were determined and their sum subtracted from ideal purity of 100 %, or 1 kg/kg. Impurity assessment techniques included glow discharge mass spectrometry, inductively coupled plasma mass spectrometry and carrier gas hot extraction/combustion analysis. Up to 91 elemental impurities covering metals, non-metals and semi-metals/metalloids were quantified. Due to the lack of internal experience or experimental capabilities, some participants contracted external laboratories for specific analytical tasks, mainly for the analysis of non-metals. The reported purity, expressed as zinc mass fraction in the high purity zinc material, showed excellent agreement for all participants, with a relative standard deviation of 0.011 %. The calculated reference value, w(Zn) = 0.999 873 kg/kg, was assigned an asymmetric combined uncertainty of + 0.000025 kg/kg and – 0.000028 kg/kg. Comparability amongst participating metrology institutes is thus demonstrated for the purity determination of high purity metals which have no particular difficulties with their decomposition / dissolution process when solution-based analytical methods are used, or which do not have specific difficulties when direct analysis approaches are used. Nevertheless, further development is required in terms of uncertainty assessment, quantification of non-metals and the determination of purity of less pure elements and/or for those elements suffering difficulties with the decomposition process. KW - Purity assessment KW - Direct metal assay KW - Impurity assessment KW - Non-metal analysis KW - High-purity elements KW - SI-traceability PY - 2018 U6 - https://doi.org/10.1088/1681-7575/aaa677 SN - 1681-7575 SN - 0026-1394 VL - 55 IS - 2 SP - 211 EP - 221 PB - Institute of Physics Publishing CY - Bristol AN - OPUS4-44257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sobina, E. A1 - Zimathis, Anett A1 - Prinz, Carsten A1 - Emmerling, Franziska A1 - de Santis Neves, R. A1 - Galhardo, C. E. A1 - De Robertis, E. A1 - WANG, H. A1 - Mizuno, K. A1 - Kurokawa, A. A1 - Unger, Wolfgang T1 - Final report of CCQM-K136 measurement of porosity properties (specific adsorption, BET specific surface area, specific pore volume and pore diameter) of nanoporous Al2O3 N2 - The CCQM-K136 key comparison for determination of the porosity properties of aluminum oxide has been organized jointly by the surface and micro/nano analysis working groups of CCQM to test the abilities of the metrology institutes to measure the porosity properties (specific adsorption, BET specific surface area, specific pore volume and pore diameter) of nanoporous Al2O3. Ural Scientific Research Institute for Metrology (UNIIM) acted as the coordinating laboratory for this comparison with BAM Federal Institute for Materials Research and Testing (BAM) as co-coordinating laboratory. Five NMIs and one DI participated in this key comparison. All participants used a gas adsorption method, here nitrogen adsorption at 77.3 K, for analysis according to the international standards ISO 15901-2 and 9277. KW - BET specific surface area KW - Specific adsorption KW - Pore diameter KW - Specific pore volume KW - Nanoporous Al2O3 PY - 2016 UR - http://iopscience.iop.org/article/10.1088/0026-1394/53/1A/08014 U6 - https://doi.org/10.1088/0026-1394/53/1A/08014 SN - 0026-1394 SN - 1681-7575 VL - 2016 IS - 53 Technical Supplement SP - Article 08014, 1 EP - 39 PB - IOPscience AN - OPUS4-38282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -