TY - JOUR A1 - Oprzeska-Zingrebe, E. A. A1 - Meyer, Susann A1 - Roloff, Alexander A1 - Kunte, Hans-Jörg A1 - Smiatek, J. T1 - Influence of compatible solute ectoine on distinct DNA structures: thermodynamic insights into molecular binding mechanisms and destabilization effects JF - Phys.Chem.Chem.Phys. N2 - In nature, the cellular environment of DNA includes not only water and ions, but also other components and co-solutes, which can exert both stabilizing and destabilizing effects on particular oligonucleotide conformations. Among them, ectoine, known as an important osmoprotectant organic co-solute in a broad range of pharmaceutical products, turns out to be of particular relevance. In this article, we study the influence of ectoine on a short single-stranded DNA fragment and on double-stranded helical B-DNA in aqueous solution by means of atomistic molecular dynamics (MD) simulations in combination with molecular theories of solution. Our results demonstrate a conformation-dependent binding behavior of ectoine, which favors the unfolded state of DNA by a combination of electrostatic and dispersion interactions. In conjunction with the Kirkwood–Buff theory, we introduce a simple Framework to compute the influence of ectoine on the DNA melting temperature. Our findings reveal a significant linear decrease of the melting temperature with increasing ectoine concentration, which is found to be in qualitative agreement with results from denaturation experiments. The outcomes of our Computer simulations provide a detailed mechanistic rationale for the surprising destabilizing influence of ectoine on distinct DNA structures. KW - Ectoine KW - DNA KW - Thermodynamic KW - Melting temperature PY - 2018 DO - https://doi.org/10.1039/c8cp03543a SN - 1463-9076 SN - 1463-9084 VL - 20 IS - 40 SP - 25861 EP - 25874 PB - Royal Society of Chemistry AN - OPUS4-46327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Uhlig, F. A1 - Solomun, Tihomir A1 - Smiatek, J. A1 - Sturm, Heinz T1 - Combined influence of ectoine and salt: spectroscopic and numerical evidence for compensating effects of aqueous solutions JF - Physical Chemistry Chemical Physics N2 - Ectoine is an important osmolyte, which allows microorganisms to survive in extreme environmental salinity. The hygroscopic effects of ectoine in pure water can be explained by a strong water binding behavior whereas a study on the effects of ectoine in salty solution is yet missing. We provide Raman spectroscopic evidence that the influence of ectoine and NaCl are opposing and completely independent of each other. The effect can be explained by the formation of strongly hydrogen-bonded water molecules around ectoine which compensate the influence of the salt on the water dynamics. The mechanism is corroborated by first principles calculations and broadens our understanding of zwitterionic osmolytes in aqueous solution. Our findings allow us to provide a possible explanation for the relatively high osmolyte concentrations in halotolerant bacteria. KW - Ectoine KW - Aqueous solution KW - Biological structure KW - Organic osmolytes KW - Raman spectroscopy KW - Water structure PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-376761 UR - http://pubs.rsc.org/en/content/articlelanding/2016/cp/c6cp05417j#!divAbstract DO - https://doi.org/10.1039/c6cp05417j VL - 18 IS - 41 SP - 28398 EP - 28402 PB - Royal Society of Chemistry CY - UK AN - OPUS4-37676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Solomun, Tihomir A1 - Hahn, Marc Benjamin A1 - Smiatek, J. T1 - Raman spectroscopic signature of ectoine conformations in bulk solution and crystalline state JF - ChemPhysChem N2 - Recent crystallographic results revealed conformational changes of zwitterionic ectoine upon hydration. By means of confocal Raman spectroscopy and density functional theory calculations, we present a detailed study of this transformation process as part of a Fermi resonance analysis. The corresponding findings highlight that all resonant couplings are lifted upon exposure to water vapor as a consequence of molecular binding processes. The importance of the involved molecular groups for water binding and conformational changes upon hydration is discussed. Our approach further Shows that the underlying rapid process can be reversed by carbon dioxide saturated atmospheres. For the first time, we also confirm that the conformational state of ectoine in aqueous bulk solution coincides with crystalline ectoine in its dihydrate state, thereby highlighting the important role of a few bound water molecules. KW - Fermi resonance KW - Ectoine hydration KW - DFT calculations of Raman spectra KW - Position of carboxylate group PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509855 DO - https://doi.org/10.1002/cphc.202000457 SN - 1439-4235 SN - 1439-7641 VL - 21 IS - 17 SP - 1945 EP - 1950 PB - Wiley-VCH CY - Weinheim AN - OPUS4-50985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -