TY - JOUR A1 - Adamski, Paweł A1 - Zgrzebnicki, Michał A1 - Albrecht, Aleksander A1 - Jurkowski, Artur A1 - Wojciechowska, Agnieszka A1 - Ekiert, Ewa A1 - Sielicki, Krzysztof A1 - Mijowska, Ewa A1 - Smales, Glen J. A1 - Maximenko, Alexey A1 - Moszyński, Dariusz T1 - Ammonia synthesis over γ-Al2O3 supported Co-Mo catalysts N2 - Novel ammonia synthesis catalysts are sought due to energetic transformation and increasing environmental consciousness. Materials containing cobalt and molybdenum are showing state-of-art activities in ammonia synthesis. The application of γ-alumina support was proposed to enhance the properties of Co-Mo nanoparticles. The wet impregnation of the support was conducted under reduced pressure. The active catalysts were obtained by ammonolysis of precursors. The chemical and phase composition, as well as morphology, porosity, and surface composition of precursors and catalysts, were characterized. The Co-Mo nanoparticles phase composition as well as their size and dispersion were determined using X-ray absorption spectroscopy utilizing synchrotron radiation, electron microscopy, and X-ray scattering. The catalytic activity was tested in the ammonia synthesis process under atmospheric pressure. The activity and stability of the supported catalysts were compared with unsupported cobalt molybdenum nitride Co3Mo3N, revealing the superiority of the present approach. KW - Ammonia synthesis KW - Supported catalyst KW - Cobalt molybdenum nitrides KW - Scattering KW - X-ray scattering KW - Gamma-alumina KW - Stability PY - 2025 DO - https://doi.org/10.1016/j.mcat.2025.114907 SN - 2468-8231 VL - 575 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-64827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - del Rocío Silva-Calpa, Leydi A1 - de Souza Bernardes, Andrelaine A1 - de Avillez, Roberto Ribeiro A1 - Smales, Glen J. A1 - Camarena, Mariella Alzamora A1 - Ramos Moreira, Carla A1 - Zaitsev, Volodymyr A1 - Archanjo, Braulio Soares A1 - Letichevsky, Sonia T1 - From support to shell: An innovative design of air-stable nano zero-valent iron–nickel catalysts via structural self-assembly N2 - This work presents the design of air-stable core–shell zero-valent iron–nickel nanofilaments supported on silica and zeolite, developed to overcome the oxidation limitations of nano zero-valent iron in environmental catalysis. The nanofilaments feature ∼ 100 nm iron–nickel cores surrounded by ultrafine iron-rich threads embedded with aluminates and silicates, originating from partial support dissolution during synthesis. By varying the iron reduction time, three catalysts were prepared: one on silica reduced for 30 min, and two on zeolite reduced for 30 and 15 min. They were thoroughly characterized using nitrogen physisorption, X-ray diffraction, electron microscopy with elemental analysis, Mössbauer spectroscopy, and small-angle X-ray scattering. The zeolite-supported catalyst reduced for 15 min showed the highest activity for hexavalent chromium reduction (rate constant 8.054 min−1), attributed to a higher fraction of reactive iron–nickel phases formed under shorter reduction. Its tailored core–shell structure improves air stability and surface reactivity, highlighting its potential as a next-generation zero-valent iron nanocatalyst for aqueous remediation KW - nanofilaments KW - Core–shell nanostructures KW - Air-stable nanomaterials KW - Structure-controlled FeNi nanoparticles KW - Hexavalent chromium reduction KW - X-ray scattering KW - MOUSE PY - 2025 DO - https://doi.org/10.1016/j.mtcomm.2025.114142 SN - 2352-4928 VL - 49 SP - 1 EP - 15677 PB - Elsevier Ltd. AN - OPUS4-65087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Berry, Charlotte A. A1 - Reinart, Katre A1 - Smales, Glen J. A1 - Wilkinson, Holly N. A1 - Hardman, Matthew J. A1 - Marchesini, Sofia A1 - Lee, William A1 - Nery, Eveliny Tomás A1 - Moghaddam, Zarrin A1 - Hoxha, Agron A1 - Felipe-Sotelo, Mónica A1 - Gutierrez-Merino, Jorge A1 - Carta, Daniela T1 - Hierarchically porous copper and gallium loaded sol–gel phosphate glasses for enhancement of wound closure N2 - In this work, we have developed hierarchically porous phosphate-based glasses (PPGs) as novel materials capable of promoting wound closure and simultaneously delivering antibacterial effects at the glass-biological tissue interface. PPGs are characterised by extended porosity, which enhances the controlled release of therapeutic ions, whilst facilitating cell infiltration and tissue growth. Two series of PPGs in the systems P2O5–CaO–Na2O–CuO and P2O5–CaO–Na2O–Ga2O3 with (CuO and Ga2O3 0, 1, 5 and 10 mol%) were manufactured using a supramolecular sol–gel synthesis strategy. Significant wound healing promotion (up to 97%) was demonstrated using a human ex vivo wound model. A statistically significant reduction of the bacterial strains Staphylococcus aureus and Escherichia coli was observed in both series of PPGs, particularly those containing copper. All PPGs exhibited good cytocompatibility on keratinocytes (HaCaTs), and analysis of PPG dissolution products over a 7-day period demonstrated controlled release of phosphate anions and Ca, Na, Cu, and Ga cations. These findings indicate that Cu- and Ga-loaded PPGs are promising materials for applications in soft tissue regeneration given their antibacterial capabilities, in vitro biocompatibility with keratinocytes and ex vivo wound healing properties at the biomaterial-human tissue interface. KW - Porous glass KW - Phosphates KW - Wound healing materials KW - Antibacterial KW - X-ray scattering KW - MOUSE PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650867 DO - https://doi.org/10.1039/d5tb01945a SN - 2050-750X VL - 13 IS - 48 SP - 15662 EP - 15677 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Smales, Glen J. A1 - Appel, Paul Alexander A1 - Breßler, Ingo A1 - Chambers, Aaron A1 - Dumele, Oliver A1 - Ebisch, Maximilian A1 - Frontzek, Julius A1 - del Refugio Monroy, José A1 - Rosalie, Julian M. A1 - Pauw, Brian R. T1 - DACHS and RoWaN: The Automated and Traceable Synthesis of ZIF-8 N2 - Automated synthesis and open-data practices are increasingly seen as key enablers of transparent, traceable, and reproducible science. By combining automation with structured, metadata-rich documentation, it becomes possible to systematically com- pare synthesis strategies and link outcomes to detailed parameters. In this work, we implement such an approach to study the synthesis of ZIF-8, comparing hand and automation-assisted methods under controlled conditions. Using over 100 synthesis experiments, we assess the repeatability of particle size and yield, and explore how variations in mixing and injection influence outcomes. This study demonstrates how traceable synthesis workflows can support repeatability and comparison across synthe- sis strategies. The DACHS (Database for Automation, Characterization and Holistic Synthesis) framework underpins this work, providing a lightweight infrastructure for transparent synthesis data capture. KW - Automation KW - MOFs KW - SAXS PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-645861 DO - https://doi.org/10.26434/chemrxiv-2025-7fgg0 SP - 1 EP - 32 PB - Cambridge AN - OPUS4-64586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -