TY - GEN A1 - Brookes, Stephen-Peter A1 - Kühn, Hans-Joachim A1 - Skrotzki, Birgit A1 - Klingelhöffer, Hellmuth A1 - Sievert, Rainer A1 - Pfetzing, J. A1 - Eggeler, G. ED - K. Maruyama, ED - M. Niinomi, ED - S. Akiyama, ED - M. Ikeda, ED - M. Hagiwara, T1 - Axial-torsional thermo-mechanical fatigue of Ti-45 Al-5Nb-0.2B-0.2C T2 - 11th World Conference on Titianium (JIMIC 5) CY - Kyoto, Japan DA - 2007-06-03 KW - Gamma titanium aluminide KW - Thermo-mechanical fatigue KW - TMF KW - Axial-torsional loadings KW - Microstructure PY - 2007 SN - 978-4-88903-406-6 VL - 1 SP - 679 EP - 682 PB - Japan Institute of Metals CY - Kyoto AN - OPUS4-16669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brookes, Stephen-Peter A1 - Kühn, Hans-Joachim A1 - Skrotzki, Birgit A1 - Klingelhöffer, Hellmuth A1 - Sievert, Rainer A1 - Pfetzing, J. A1 - Peter, D. A1 - Eggeler, G. T1 - Axial-torsional thermomechanical fatigue of a near-gamma TiAl-alloy N2 - The uniaxial, torsional and axial-torsional thermomechanical fatigue (TMF) behavior of the near-γ TiAl-alloy TNB-V5 was investigated. TMF tests were performed at 400-800 °C with mechanical strain amplitudes ranging from 0.15% to 0.7%. The tests were conducted thermomechanically in-phase (IP) and out-of-phase (OP). For the same lifetimes, uniaxial IP tests required the highest strain amplitudes, while OP test conditions were most damaging and needed the lowest strain amplitudes. The Mises equivalent mechanical strain amplitudes of pure torsional tests were found in between uniaxial in-phase and out-of-phase tests for the same lifetimes. The non-proportional multiaxial out-of-phase test showed a lower lifetime at the same equivalent mechanical strain amplitude compared to the other types of tests. The microstructure has been characterized applying electron microscopy and microstructural parameters such as fraction of twinned grains, grain size, lamellar distance and dislocation density have been quantified. KW - Gamma titanium aluminide KW - TNB-V5 KW - Thermomechanical fatigue (TMF) KW - Axial-torsional loading KW - Microstructure PY - 2010 DO - https://doi.org/10.1016/j.msea.2010.03.073 SN - 0921-5093 SN - 1873-4936 VL - 527 IS - 16-17 SP - 3829 EP - 3839 PB - Elsevier CY - Amsterdam AN - OPUS4-21289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Koch, B. T1 - Microstructural characterization of the metastable Beta-titanium alloy TIMETAL LCB after fatigue loading N2 - In the present work, the titanium alloy Ti-6.8Mo-4.5Fe-1.5Al (Timetal LCB) was investigated with respect to the microstructural evolution during strain controlled fatigue loading. The alloy was developed to reduce the generally high material costs of β-alloys by substituting expensive beta stabilizers by using a standard Fe-Mo master alloy. One possible application seen in the automotive industry is the substitution os suspension structural parts currently made of steel, suc as suspension springs. These components require a high strength and fatigue resistance. T2 - International conference on electron nanoscopy & XXXII Annual meeting of EMSI CY - Hyderabad, India DA - 2011-07-06 KW - Titanium KW - Fatigue KW - Microstructure KW - Deformation mechanism PY - 2011 SP - 255 EP - 256 AN - OPUS4-24167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Skrotzki, Birgit T1 - Microstructure evolution in a 2618A aluminium alloy during ageing N2 - The aluminium alloy 2618A is an Al-Cu-Mg alloy which is part of the 2xxx series of age-hardenable alloys. These materials are designed for long-term Operation in transportation and aerospace industries. The desired properties, e.g. creep behavior, hardness, and damage tolerance, are controlled by the distribution of fine precipitates formed within the matrix. However, the strength of the material declines du ring exposition to elevated temperatures due to the overageing of the S-phase precipitates (AI2CuMg) and the conversion of the S-phase into the stable equilibrium S-phase. A quantitative model of the overageing process at application relevant temperatures would be desirable for accurate predictions of component lifetime made from the 2618A alloy. T2 - MC 2015 - Microscopy conference CY - Göttingen, Germany DA - 06.09.2015 KW - Aluminium alloys KW - Transmission electron microscopy KW - Microstructure KW - Coarsening PY - 2015 SP - MS4.P078, 150 EP - 151 AN - OPUS4-34304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - von Hartrott, P. A1 - Piesker, Benjamin A1 - Skrotzki, Birgit T1 - Comparison of long-term radii evolution of the S-phase in aluminum alloy 2618A during ageing and creep N2 - A study was made on the effect of creep loading on the precipitate radii evolution of the aluminum alloy 2618A. The overageing process of the alloy was investigated under load at a temperature of 190 °C with stresses between 79 and 181 MPa and compared to stress free isothermal ageing. The precipitates responsible for strength were characterized using dark-field transmission electron microscopy (DFTEM). This allows the experimental Determination of radii distributions of the rod-shaped Al2CuMg precipitates and the evaluation regarding their mean precipitate radius. It was found that the mean precipitate radius enables the comparison of the different microstructural conditions of crept and uncrept samples. The mean precipitate radii of the samples experiencing creep are significantly higher than those of undeformed samples. It was shown that the acquired radii distributions are viable to determine averaged particle radii for comparison of the aged samples. A ripening process including pipe diffusion along dislocations describes the data on coarsening very well for the creep samples. KW - Aluminum alloys KW - Electron microscopy KW - Aging KW - Creep KW - Microstructure KW - S-Phase PY - 2018 DO - https://doi.org/10.1016/j.msea.2018.01.033 SN - 0921-5093 VL - 716 SP - 78 EP - 86 PB - Elsevier B. V. AN - OPUS4-44090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von Hartrott, P. A1 - Metzger, M. A1 - Rockenhäuser, Christian A1 - Skrotzki, Birgit T1 - Lifetime assessment of aging materials N2 - Materials subjected to high-temperature service conditions will change their microstructure with time. Associated with this aging process is a change of mechanical properties as well as a change of damage mechanisms. Within the scope of the FVV project Aging and Lifetime, Fraunhofer IWM in Freiburg and BAM in Berlin (both Germany) experimentally characterized the widespread high-temperature aluminum alloy EN AW-2618A in different overaging states. Based on the experimental findings, models for numerical lifetime assessment with the finite-element method were implemented. KW - Aluminum alloy KW - Aging KW - Microstructure KW - Lifetime prediction KW - Damage PY - 2018 DO - https://doi.org/10.1007/s38313-018-0084-7 SN - 2192-9114 VL - 79 IS - 10 SP - 64 EP - 68 PB - Springer AN - OPUS4-46065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Skrotzki, Birgit ED - Panfilov, Peter ED - Kodzhaspirov, Georgii T1 - Microstructural evolution during creep of Al-alloy 2618A N2 - The aluminum alloy 2618A is an Al-Cu-Mg alloy with additions of Fe and Ni, which was designed for long-term operation at elevated temperature in transportation and aerospace industries. Typical applications include aircraft parts and structures (sheet material) or engine components such as turbo charger centrifugal compressor wheels (forged material). Such components are subjected to prolonged aging during service, (e.g. 50 000 h) at temperatures which are close to their age hardening temperature (ca. 190 °C). The microstructural evolution during creep exposure is studied. T2 - Creep 2017 CY - St. Petersburg, Russia DA - 19.07.2017 KW - Creep KW - Microstructure KW - Coarsening KW - TEM PY - 2017 SN - 978-5-7422-5799-8 SP - 80 EP - 81 PB - SpbPU Publisher CY - St. Petersburg, Russia AN - OPUS4-40750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Rockenhäuser, Christian A1 - Schriever, Sina T1 - Microstructural Evolution during Creep of Al-Alloy 2618A N2 - The aluminum alloy 2618A is an Al-Cu-Mg alloy with additions of Fe and Ni, which was designed for long-term operation at elevated temperature in transportation and aerospace industries. Typical applications include aircraft parts and structures (sheet material) or engine components such as turbo charger centrifugal compressor wheels (forged material). Such components are subjected to prolonged aging during service, (e.g. 50 000 h) at temperatures which are close to their age hardening temperature (ca. 190 °C). The microstructural evolution was investigated. T2 - Creep 2017 CY - St. Petersburg, Russia DA - 18.06.2017 KW - Creep KW - Microstructure KW - Coarsening KW - TEM PY - 2017 AN - OPUS4-40756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ávila Calderón, Luis Alexander A1 - Graf, B. A1 - Rehmer, Birgit A1 - Petrat, T. A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Characterization of Ti-6Al-4V fabricated by multilayer laser powder-based directed energy deposition N2 - Laser powder-based directed energy deposition (DED-L) is increasingly being used in additive manufacturing (AM). As AM technology, DED-L must consider specific challenges. It must achieve uniform volume growth over hundreds of layers and avoid heat buildup of the deposited material. Herein, Ti–6Al–4V is fabricated using an approach that addresses these challenges and is relevant in terms of transferability to DED–L applications in AM. The assessment of the obtained properties and the discussion of their relationship to the process conditions and resulting microstructure are presented. The quality of the manufacturing process is proven in terms of the reproducibility of properties between individual blanks and with respect to the building height. The characterization demonstrates that excellent mechanical properties are achieved at room temperature and at 400 °C. KW - AGIL KW - Laser powder-based directed energy deposition KW - Tensile properties KW - Ti-6Al-4V KW - Microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542262 DO - https://doi.org/10.1002/adem.202101333 SN - 1438-1656 SN - 1527-2648 SP - 1 EP - 15 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Avila, Luis A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Rehmer, Birgit T1 - Mechanical Testing and Simulations on AM Ti6Al4V and 316L N2 - First experimental results are shown on mechanical properties of additively manufactured alloy Ti6Al4V. A modelling and simulation approach is presented to describe the anisotropic behavior of 316L at the macro-scale. T2 - Workshop on Additive Manufacturing: Process, materials, testing, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - AM KW - Mechanical behavior KW - Microstructure KW - Anisotropy KW - Modeling KW - Simulation PY - 2019 AN - OPUS4-48072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Häusler, Ines A1 - Schwarze, C. A1 - Umer Bilal, M. A1 - Valencia Ramirez, D. A1 - Hetaba, W. A1 - Darvishi Kamachali, Reza A1 - Skrotzki, Birgit T1 - Precipitation of T1 and theta′ Phase in Al‐4Cu‐1Li‐0.25Mn During Age Hardening: Microstructural Investigation and Phase‐Field Simulation N2 - Experimental and phase field studies of age hardening response of a high purity Al‐4Cu‐1Li‐0.25Mn‐alloy (mass %) during isothermal aging are conducted. In the experiments, two hardening phases are identified: the tetragonal θ′ (Al₂Cu) phase and the hexagonal T1 (Al₂CuLi) phase. Both are plate shaped and of nm size. They are analyzed with respect to the development of their size, number density and volume fraction during aging by applying different analysis techniques in TEM in combination with quantitative microstructural analysis. 3D phase‐field simulations of formation and growth of θ′ phase are performed in which the full interfacial, chemical and elastic energy contributions are taken into account. 2D simulations of T1 phase are also investigated using multi‐component diffusion without elasticity. This is a first step toward a complex phase‐field study of T1 phase in the ternary alloy. The comparison between experimental and simulated data shows similar trends. The still unsaturated volume fraction indicates that the precipitates are in the growth stage and that the coarsening/ripening stage has not yet been reached. KW - Al‐Cu‐Li‐alloy KW - Precipitates KW - Age hardening KW - Volume fraction KW - Number density KW - Microstructure KW - Phase‐field modeling KW - Elasticity KW - Multi‐component diffusion KW - Growth kinetics PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-390473 DO - https://doi.org/10.3390/ma10020117 SN - 1996-1944 VL - 10 IS - 2 SP - Article 117, 1 EP - 21 PB - MDPI CY - Basel, Schweiz AN - OPUS4-39047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rockenhäuser, Christian A1 - Rowolt, C. A1 - Milkereit, B. A1 - Darvishi Kamachali, Reza A1 - Kessler, O. A1 - Skrotzki, Birgit T1 - On the long-term aging of S-phase in aluminum alloy 2618A N2 - The aluminum alloy 2618A is applied for engine components such as radial compressor wheels which operate for long time at elevated temperatures. This results in coarsening of the hardening precipitates and degradation in mechanical properties during the long-term operation, which is not taken into account in the current lifetime prediction models due to the lack of quantitative microstructural and mechanical data. To address this issue, a quantitative investigation on the evolution of precipitates during long-term aging at 190 °C for up to 25,000 h was conducted. Detailed transmission electron microscopy (TEM) was combined with Brinell hardness measurements and thorough differential scanning calorimetry (DSC) experiments. The results showthat GPB zones and S-phase Al2CuMg grow up to < 1,000 h during which the GPB zones dissolve and S-phase precipitates form. For longer aging times, only S-phase precipitates coarsen, which can be well described using the Lifshitz–Slyozov Wagner theory of ripening. A thorough understanding of the underlying microstructural processes is a prerequisite to enable the integration of aging behavior into the established lifetime models for components manufactured from alloy 2618A. KW - Long-term aging KW - Transmission electron microscopy (TEM) KW - Differential scanning calorimetry (DSC) KW - Microstructure KW - S-phase KW - Ostwald ripening PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519899 DO - https://doi.org/10.1007/s10853-020-05740-x SN - 0022-2461 VL - 56 IS - 14 SP - 8704 EP - 8716 PB - Springer Nature AN - OPUS4-51989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Han, Ying A1 - Kruse, Julius A1 - Rosalie, Julian A1 - Radners, J. A1 - von Hartrott, P. A1 - Skrotzki, Birgit T1 - Influence of mean stress and overaging on fatigue life of aluminum alloy EN AW-2618A N2 - Fatigue tests were performed on the forged aluminum alloy EN AW-2618A in the T61 state. Different stress ratios (R = -1, R = 0.1) were selected to study the influence of mean stress on fatigue life. Two overaged states (10 h/230 ◦C, 1000 h/230 ◦C) were also tested to investigate the influence of overaging on fatigue life. Transmission electron microscopy (TEM) was used to characterize the precipitates (S-phase), which are mainly responsible for the strength of the alloy. A fractographic analysis was also performed to determine the failure mode. Overaging reduces the fatigue life compared to the T61 state. The longer the aging time, the lower the fatigue resistance. The reason is the decrease in (yield) strength, which correlates with the radius of the S-phase: the precipitate radius increases by a factor of approximately two for the overaged states compared to the initial state. The analysis of the fracture surfaces showed crack initiation occurs predominantly on the outer surface and is associated with the primary phases. KW - Aluminum alloys KW - Aging KW - Fatigue KW - Microstructure KW - Electron microscopy KW - S-Phase PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583708 DO - https://doi.org/10.1016/j.msea.2023.145660 SN - 0921-5093 VL - 886 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-58370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulbricht, Alexander A1 - Avila Calderon, Luis A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit A1 - Bruno, Giovanni T1 - Evolution of Creep Damage of 316L Produced by Laser Powder Bed Fusion N2 - The damage mechanisms of metallic components produced by process laser powder bed fusion differ significantly from those typically observed in conventionally manufactured variants of the same alloy. This is due to the unique microstructures of additively manufactured materials. Herein, the focus is on the study of the evolution of creep damage in stainless steel 316L specimens produced by laser powder bed fusion. X-ray computed tomography is used to unravel the influence of the process-specific microstructure from the influence of the initial void distribution on creep damage mechanisms. The void distribution of two specimens tested at 600 °C and 650 °C is analyzed before a creep test, after an interruption, and after fracture. The results indicate that the formation of damage is not connected to the initial void distribution. Instead, damage accumulation at grain boundaries resulting from intergranular cracking is observed. KW - Creep KW - Computed Tomography KW - PBF-LB/M/316L KW - Laser Powder Bed Fusion KW - Microstructure KW - AISI 316L KW - Additive Manufacturing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574127 DO - https://doi.org/10.1002/adem.202201581 SP - 1 EP - 9 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-57412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stegemann, Robert A1 - Cabeza, Sandra A1 - Pelkner, Matthias A1 - Lyamkin, Viktor A1 - Sonntag, Nadja A1 - Bruno, Giovanni A1 - Skrotzki, Birgit A1 - Kreutzbruck, Marc T1 - Evaluation of high spatial resolution imaging of magnetic stray fields for early damage detection N2 - The paper discusses the evaluation of elastic and plastic strain states in two low-carbon steels of the same steel group with high spatial resolution GMR (giant magneto resistance) sensors. The residual stress distributions of tungsten inert gas welded plates were determined by means of neutron diffraction as a reference. The normal component of local residual magnetic stray fields arise in the vicinity of the positions of maximum stress. The experiments performed on flat tensile specimen indicate that the boundaries of plastic deformations are a source of stray fields. The spatial variations of magnetic stray fields for both the weld and the tensile samples are in the order of the earths magnetic field. T2 - 43rd Annual Review of Progress in Quantitative Nondestructive Evaluation, Volume 36 CY - Atlanta, Georgia, USA DA - 17.07.2016 KW - Plastic deformation KW - GMR KW - Neutron diffraction KW - Residual stress KW - Microstructure KW - Low carbon steel KW - TIG weld PY - 2017 SN - 978-0-7354-1474-7 DO - https://doi.org/10.1063/1.4974688 SN - 0094-243X VL - 1806 IS - 1 SP - Article UNSP 110010-1 EP - 10 PB - AIP Publishing CY - Melville, NY 11747 AN - OPUS4-39279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -