TY - JOUR A1 - Peter, D. A1 - Pfetzing, J. A1 - Wagner, M.F.-X. A1 - Somsen, C. A1 - Pesicka, J. A1 - Skrotzki, Birgit A1 - Eggeler, G. T1 - Quantitative Charakterisierung der Gefüge-Anisotropie einer stranggepressten TiAl-Legierung / Quantitative Characterisation and Microstructural Anisotropy of a Hot-Extruded TiAl Alloy JF - Praktische Metallographie = Practical metallography KW - Titanaluminide KW - Mikrostruktur KW - Quantitative Analyse KW - Kriechen KW - Anisotropie PY - 2008 SN - 0032-678X N1 - Sprachen: Deutsch/Englisch - Languages: German/English VL - 45 IS - 5 SP - 210 EP - 224 PB - Hanser CY - München AN - OPUS4-17562 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sturm, D. A1 - Heilmaier, M. A1 - Schneibel, J.H. A1 - Jéhanno, P. A1 - Skrotzki, Birgit A1 - Saage, H. T1 - The influence of silicon on the strength and fracture toughness of molybdenum JF - Materials science and engineering A N2 - Mo–Si alloys containing up to 1 wt.% Si were fabricated by powder-metallurgical processing and their lattice parameters, elastic constants, densities, grain sizes, strengths, ductilities, and fracture toughness values were measured. The yield strength was insensitive to the grain size, i.e., a Hall–Petch relationship was not observed. Generally, Si additions caused pronounced solid solution strengthening. However, for small Si concentrations (≤0.1 wt.%) solid solution softening was observed at room temperature and below. With increasing Si concentration, the room temperature ductility and fracture toughness dropped precipitously. This is attributed to the increase in strength and a transition from transgranular to intergranular fracture. KW - Molybdenum KW - Solid solution strengthening KW - Solid solution softening KW - Hall-Petch relationship PY - 2007 SN - 0921-5093 SN - 1873-4936 VL - 463 IS - 1-2 SP - 107 EP - 114 PB - Elsevier CY - Amsterdam AN - OPUS4-14820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Olbricht, Jürgen A1 - Bismarck, Marc A1 - Skrotzki, Birgit T1 - Characterization of the creep properties of heat resistant 9-12% chromium steels by miniature specimen testing JF - Materials science and engineering A N2 - A miniature specimen geometry is presented that allows to extract small samples for tensile creep tests directly from critical components of steam generators in power plants like e.g. superheater tubes. In this way, material can be tested which has been subjected to the full processing chain of the component. The specimens then exhibit all microstructural modifications that are present in the component after the shaping process and heat treatment, and representative mechanical properties are determined. Similarly, specimens can be extracted from pre-corroded test pieces or used components after service to determine the impact of complex aging/loading/oxidation conditions during service on the mechanical properties of the material. The applicability of the miniature specimen test method is demonstrated in a comparative creep study involving standard and miniature specimens of P91 tempered martensite ferritic steel. Test results indicate satisfactory accuracy/repeatability of the method. Comparison with large scale specimen data reveals an influence of specimen size on the obtained creep behavior. These size effects need to be considered for a correct interpretation of results from miniature specimen creep tests. KW - Fossil fuel power plants KW - Creep testing KW - Miniature specimen KW - Size effects KW - Tempered martensite ferritic steels KW - P91 PY - 2013 DO - https://doi.org/10.1016/j.msea.2013.07.067 SN - 0921-5093 SN - 1873-4936 VL - 585 SP - 335 EP - 342 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-29080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brookes, Stephen-Peter A1 - Kühn, Hans-Joachim A1 - Skrotzki, Birgit A1 - Klingelhöffer, Hellmuth A1 - Sievert, Rainer A1 - Pfetzing, J. A1 - Peter, D. A1 - Eggeler, G. T1 - Axial-torsional thermomechanical fatigue of a near-gamma TiAl-alloy JF - Materials science and engineering A N2 - The uniaxial, torsional and axial-torsional thermomechanical fatigue (TMF) behavior of the near-γ TiAl-alloy TNB-V5 was investigated. TMF tests were performed at 400-800 °C with mechanical strain amplitudes ranging from 0.15% to 0.7%. The tests were conducted thermomechanically in-phase (IP) and out-of-phase (OP). For the same lifetimes, uniaxial IP tests required the highest strain amplitudes, while OP test conditions were most damaging and needed the lowest strain amplitudes. The Mises equivalent mechanical strain amplitudes of pure torsional tests were found in between uniaxial in-phase and out-of-phase tests for the same lifetimes. The non-proportional multiaxial out-of-phase test showed a lower lifetime at the same equivalent mechanical strain amplitude compared to the other types of tests. The microstructure has been characterized applying electron microscopy and microstructural parameters such as fraction of twinned grains, grain size, lamellar distance and dislocation density have been quantified. KW - Gamma titanium aluminide KW - TNB-V5 KW - Thermomechanical fatigue (TMF) KW - Axial-torsional loading KW - Microstructure PY - 2010 DO - https://doi.org/10.1016/j.msea.2010.03.073 SN - 0921-5093 SN - 1873-4936 VL - 527 IS - 16-17 SP - 3829 EP - 3839 PB - Elsevier CY - Amsterdam AN - OPUS4-21289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Yue A1 - Schilling, Markus A1 - von Hartrott, P. A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - Ontopanel: A Tool for Domain Experts Facilitating Visual Ontology Development and Mapping for FAIR Data Sharing in Materials Testing JF - Integrating Materials and Manufacturing Innovation N2 - In recent years, the design and development of materials are strongly interconnected with the development of digital technologies. In this respect, efficient data management is the building block of material digitization and, in the field of materials science and engineering (MSE), effective solutions for data standardization and sharing of different digital resources are needed. Therefore, ontologies are applied that represent a map of MSE concepts and relationships between them. Among different ontology development approaches, graphical editing based on standard conceptual modeling languages is increasingly used due to its intuitiveness and simplicity. This approach is also adopted by the Materials-open-Laboratory project (Mat-o-Lab), which aims to develop domain ontologies and method graphs in accordance with testing standards in the field of MSE. To suit the actual demands of domain experts in the project, Ontopanel was created as a plugin for the popular open-source graphical editor diagrams.net to enable graphical ontology editing. It includes a set of pipeline tools to foster ontology development in diagrams.net, comprising imports and reusage of ontologies, converting diagrams to Web Ontology Language (OWL), verifying diagrams using OWL rules, and mapping data. It reduces learning costs by eliminating the need for domain experts to switch between various tools. Brinell hardness testing is chosen in this study as a use case to demonstrate the utilization of Ontopanel. KW - Materials Testing KW - Ontology KW - Visual ontology development KW - Data mapping KW - FAIR PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560339 DO - https://doi.org/10.1007/s40192-022-00279-y SP - 1 EP - 12 PB - Springer AN - OPUS4-56033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Jürgens, Maria A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - Creep-fatigue of P92 in service-like tests with combined stress- and strain-controlled dwell times JF - International Journal of Fatigue N2 - Complex service-like relaxation- and creep-fatigue tests with strain- and stress-controlled dwells and fatigue cycle durations of approx. 2200 s were performed exemplarily on a grade P92 steel at 620 ◦C in this study. The results indicate deviations in the prevailing creep mechanisms of long-term relaxation and creep dwells, affecting subsequent dwells, load shifts, and the macroscopic softening behavior quite differently. In addition, fracture surfaces and longitudinal metallographic sections reveal intergranular crack growth for complex loading with stress-controlled dwells, whereas complex strain-controlled tests enhance oxidation and transgranular crack propagation. These findings substantiate the limited transferability of relaxation-fatigue to creep-fatigue conditions. KW - Tempered martensite-ferritic steel KW - P92 KW - Dwell periods KW - Creep-fatigue interaction KW - Stress relaxation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564239 DO - https://doi.org/10.1016/j.ijfatigue.2022.107381 SN - 0142-1123 VL - 168 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-56423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rockenhäuser, Christian A1 - von Hartrott, P. A1 - Skrotzki, Birgit T1 - Brinell-Hardness data (HBW 2.5/62.5) of aluminum alloy EN AW-2618A after different aging times and temperatures JF - Data in Brief N2 - The article covers data on the Brinell hardness of the forged precipitation-hardened aluminum alloy EN AW-2618A in the initial T61 condition (i. e. slightly underaged) and after isothermal aging for up to 25,0 0 0 h at aging temperatures between 160 °C and 350 °C. In addition, the hardness was determined on specimens after creep testing at 190 °C and various stresses. The hardness decreases with increasing ag- ing time due to the microstructural evolution of the harden- ing precipitates. The drop occurs faster the higher the aging temperature. Aging under creep load additionally accelerates the hardness decrease. KW - Aluminum alloy KW - EN AW-2618A KW - Brinell hardness KW - Aging KW - Creep KW - Ostwald ripening KW - Reheating PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567611 DO - https://doi.org/10.1016/j.dib.2022.108830 SN - 2352-3409 VL - 46 PB - Elsevier Inc. AN - OPUS4-56761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brookes, Stephen-Peter A1 - Kühn, Hans-Joachim A1 - Skrotzki, Birgit A1 - Klingelhöffer, Hellmuth A1 - Sievert, Rainer A1 - Pfetzing, J. A1 - Peter, D. A1 - Eggeler, G. T1 - Multi-Axial Thermo-Mechanical Fatigue Of A Near-Gamma TiAl-Alloy JF - Advanced materials research N2 - A material family to replace the current superalloys in aeronautical gas turbine engines is considered to be that of gamma Titanium Aluminide (γ-TiAl) alloys. Structural components in aeronautical gas turbine engines typically experience large variations in temperatures and multiaxial states of stress under non-isothermal conditions. The uniaxial, torsional and bi-axial thermomechanical fatigue (TMF) behaviour of this γ-TiAl alloy have been examined at 400 – 800°C with strain amplitudes from 0.15% to 0.7%. The tests were conducted at both in-phase (IP) and out-ofphase (OP). The effects of TMF on the microstructure were also investigated. For the same equivalent mechanical strain amplitude uniaxial IP tests showed significantly longer lifetimes than pure torsional TMF tests. The non-proportional multiaxial OP test showed the lowest lifetimes at the same equivalent mechanical strain amplitude compared to the other types of tests. KW - Gamma-Titanium Aluminide KW - Thermo-mechanical Fatigue KW - Axial-torsional Loading PY - 2005 DO - https://doi.org/10.4028/3-908454-01-8.283 SN - 1022-6680 SN - 1662-8985 VL - 59 SP - 283 EP - 287 PB - Trans Tech Publ. CY - Zurich AN - OPUS4-18720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koch, Bernd A1 - Skrotzki, Birgit T1 - Strain controlled fatigue testing of the metastable Beta-titanium alloy Ti-6.8Mo-4.5Fe-1.5Al (Timetal LCB) JF - Materials science and engineering A N2 - The present work covers the mechanical behaviour of Timetal LCB under fatigue loading and utilizes transmission electron microscopy (TEM) to study the associated microstructural evolution. Fatigue specimens were taken out of LCB wire made for automotive suspension spring manufacturing in a solution treated as well as an additionally aged state. Uniaxial fatigue tests were carried out in total strain control with R = 0.1. Solution treated specimens tested at 3% and 4% maximum total strain showed a saturating force response, which differed from all other total strain controlled tests, and a distinct fracture behaviour. In addition, an increase of the dynamic Young's modulus is observed under these test conditions and in this material state. These findings are interpreted as a deformation induced precipitation of nanosize α- or ω-phase. In the aged state, the α-phase carries the major part of deformation work, noticeable by distinct α-substructures in fatigued specimen states. KW - Titanium alloys KW - Fatigue KW - Transmission electron microscopy KW - Fracture PY - 2011 DO - https://doi.org/10.1016/j.msea.2011.04.031 SN - 0921-5093 SN - 1873-4936 VL - 528 IS - 18 SP - 5999 EP - 6005 PB - Elsevier CY - Amsterdam AN - OPUS4-23731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stegemann, Robert A1 - Sonntag, Nadja A1 - Kreutzbruck, Marc A1 - Skrotzki, Birgit ED - Brune, M. ED - Buffière, J.Y. ED - Morel, F. ED - Nadot, Y. T1 - Self-magnetic-leakage field detection using magneto-optical sensor technique T2 - FDMDII-JIP 2014 - 14th International spring meeting - MATEC Web of conferences (Proceedings) N2 - Measurement of spontaneous magnetic stray field signals has been reported to be a promising tool for capturing macro-scale information of deformation states, defects and stress concentration zones in a material structure. This paper offers a new method for self-magnetic leakage field detection using a magneto-optical (MO) hand-held microscope. Its sensor has a dynamic field range between ±0.05 and ±2 kA/m and a lateral optical resolution of approx. 10 µm. We examined flat tensile test specimens of metastable austenitic steel AISI 304. Static tensile tests were repeatedly interrupted at various predetermined states of strain and the magnetic information was measured by the MO system. Comparative measurements using a high-precision magnetic field GMR-sensor, verify the outstanding capability of the MO microscope regarding spatial resolution of magnetic fields. T2 - FDMDII-JIP 2014 - 14th International spring meeting CY - Paris, France DA - 06.11.2014 KW - Magneto-optical sensor KW - Metal magnetic memory KW - GMR KW - NDT PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-326911 SN - 978-2-7598-1274-5 DO - https://doi.org/10.1051/matecconf/20141204010 N1 - Serientitel: Materials science, Engineering and Chemistry – Series title: Materials science, Engineering and Chemistry VL - 12 SP - 04010-1 EP - 04010-3 PB - EDP Sciences AN - OPUS4-32691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -