TY - JOUR A1 - Schicker, Johannes A1 - Sievert, Rainer A1 - Fedelich, Bernard A1 - Klingelhöffer, Hellmuth A1 - Skrotzki, Birgit T1 - Versagensabschätzung thermomechanisch belasteter Heissteile in Turboladern JF - Motortechnische Zeitschrift : MTZ KW - Computersimulation KW - Materialmodell KW - Chaboche KW - Schädigung KW - Lebensdauerabschätzung PY - 2010 SN - 0024-8525 VL - 71 IS - 6 SP - 444 EP - 450 PB - Springer Automotive Media, GWV-Fachverl. CY - Wiesbaden AN - OPUS4-21290 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Gesell, Stephan A1 - Fedelich, Bernard A1 - Rehmer, Birgit A1 - Uhlemann, Patrick A1 - Skrotzki, Birgit A1 - Ganesh, R. A1 - Dude, D. P. A1 - Kuna, M. A1 - Kiefer, B. T1 - TMF-Rissverlaufsberechnung für ATL-Heißteile T2 - Tagungsband der FVV N2 - Die Steigerung der Leistung und des thermodynamischen Wirkungsgrades von Verbrennungsmotoren führt zu erhöhten Anforderungen an die Festigkeit abgasführender Komponenten wie z. Bsp. Abgasturbolader. Als Folge erhöhter thermomechanischer Wechselbeanspruchungen (TMF) im Betrieb kommt es an den mechanisch und/oder thermisch höchst beanspruchten Stellen der Bauteile zur Bildung von Rissen, wodurch die Lebensdauer der Komponenten begrenzt wird. Derzeit werden bei Turboladern heißgehende Bauteile mit detektierten Rissen zumeist prophylaktisch ersetzt, da die weitere Ausbreitung der Risse während des Betriebs nicht vorhergesagt werden kann. Um diese aufwändige und un- ökonomische Praxis zu vermeiden, wurde im vorliegenden Forschungsvorhaben eine rechnerische Bewertungsmethode auf Basis der experimentellen und numerischen Bruchmechanik erarbeitet, mit deren Hilfe bereits in der Auslegungsphase oder während des Betriebs die (restliche) Lebensdauer der abgasführenden Komponenten vorhergesagt werden kann. Damit wird erstmalig die quantitative Vorhersage der Rissentwicklung bei TMF-Beanspruchungsbedingungen unter Berücksichtigung großer zyklischer viskoplastischer Verformungen ermöglicht. Zentrales Ergebnis des Vorhabens ist eine automatisierte Berechnungsprozedur auf der Basis spezieller Finite-Elemente-Techniken (FEM), womit sowohl der Pfad als auch die Größe eines Risses als Funktion der Anzahl der Lastwechsel in Bauteilen unter TMF-Bedingungen berechnet werden kann. Als geeigneter Beanspruchungsparameter zur Bewertung des Rissfortschritts unter TMF wurde die zyklische Rissöffnungsverschiebung ΔCTOD verwendet. Das Werkstoffverhalten des betrachteten austenitischen Gusseisens Ni-Resist D-5S wurde mit einem validierten viskoplastischen, temperaturabhängigen Materialmodell modelliert, das zur Berücksichtigung große Verzerrungen und Rotationen am Riss erweitert wurde. Für die genaue Berechnung des ΔCTOD bei TMF wurden effiziente FEM-Techniken erarbeitet. Zur Simulation der Rissausbreitung wurde ein automatischer FEM-Algorithmus mit inkrementeller adaptiver Neuvernetzung entwickelt, bei dem die Verformungen und inelastischen Zustandsvariablen jeweils vom alten auf das neue Netz übertragen werden. Dieser Algorithmus wurde im Software-Paket ProCrackPlast implementiert, das in Verbindung mit dem kommerziellen FEM-Code Abaqus zur Lösung dreidimensionaler Rissprobleme zur Verfügung steht. Ziel der umfangreichen experimentellen Arbeiten war es, an isothermen LCF und anisothermen TMF-Versuchen mit gekerbten Flachzugproben (SENT) das Risswachstum im Temperaturbereich von 20 °C bis 700 °C zu ermitteln. Mit Hilfe begleitender 2D FEM Simulationen wurden anhand dieser Datenbasis die Rissfortschrittskurven des Werkstoffs unter Anwendung des ΔCTOD-Konzepts bestimmt und in geeigneter, parametrisierter Form den Nutzern zur Verfügung gestellt. Die Versuche an SENT-Proben wurden mit der entwickelten Software ProCrackPlast als 3D Modell simuliert. Der Vergleich der 2D und 3D Simulationen ergab einen systematischen Unterschied im CTOD und CTOD, der mit Hilfe eines Übertragungsfaktors korrigiert wurde. Der Vergleich der 3D Berechnungen mit den Experimenten zeigte eine zufriedenstellende Übereinstimmung der er- reichten Risslänge mit der Zahl der Lastzyklen im gesamten Temperaturbereich, wobei die numerische Prognose meist auf der konservativen / sicheren Seite lag. Die Übertragbarkeit der Ergebnisse der 2D Parameteridentifikation auf 3D Risskonfigurationen mit Mixed-Mode Beanspruchung ist mit zusätzlichen Versagenshypothesen verbunden, die aufgrund fehlender Versuchsdaten im Vorhaben nicht endgültig geklärt werden konnten. Zur Validierung des Gesamtkonzeptes wurden LCF-Proben mit einem bauteil- typischen Oberflächenriss experimentell und numerisch untersucht. In der Simulation konnte die komplexe Form und Größe der Rissentwicklung zufriedenstellend (richtig) vorhergesagt werden. Die Leis- tungsfähigkeit der erarbeiteten rechnerische Bewertungsmethode wurde an weiteren TMF-Beispielen vorgestellt und diskutiert. Die Software ProCrackPlast und die viskoplastische Materialroutine wurden dem Anwenderkreis des Vorhabens zusammen mit einem Nutzer-Handbuch und Verifikationsbeispielen zur Verfügung gestellt. Das Ziel des Forschungsvorhabens ist erreicht worden. KW - Abgasturbolader Heißteile KW - Numerische Simulation KW - Rissverlauf PY - 2023 VL - 1320 SP - 1 EP - 137 PB - Forschungsvereinigung Verbrennungskraftmaschinen (FVV) CY - Frankfurt am Main AN - OPUS4-56960 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Uckert, Danilo A1 - Matzak, Kathrin A1 - Kühn, Hans-Joachim A1 - Rehmer, Birgit A1 - Peter, Frauke A1 - Fedelich, Bernard A1 - Falkenberg, Rainer A1 - Haftaoglu, Cetin A1 - Kindrachuk, Vitaliy A1 - Skrotzki, Birgit T1 - TMF-Lebensdauerberechnung ATL-Heißteile II - Erweiterung bestehender Werkstoff- und Rechenmodelle zur Lebensdauervorhersage für Abgasturbolader-Heißteile unter thermomechanischer Ermüdungsbeanspruchung (Abschlussbericht) N2 - In diesem Forschungsvorhaben erfolgte eine Überprüfung der Übertragbarkeit der Werkstoff- und Rechenmodelle für die Lebensdauervorhersage von ATL-Heißteilen unter TMF-Beanspruchung auf eine andere Werkstoffklasse als im Vorgängervorhaben, d.h. auf das austenitische Gusseisen EN-GJSA-XNiSiCr35-5-2 (Ni-Resist D-5S). Zunächst wurde dafür eine experimentelle Datenbasis geschaffen, da diese vor Beginn des Vorhabens nicht ausreichend war. Dazu wurden Zug-, Kriech-, LCF- und TMF-Versuche durchgeführt, die der Kalibrierung der Modelle dienten. Das Spannungs-Verformungs-Verhalten und die Lebensdauer in den LCF- und TMF-Versuchen werden durch das Modell auch für den neuen Werkstoff überwiegend gut beschrieben. LCF-Versuche mit Haltezeit bei 900 °C sowie IP-TMFVersuche mit einer Obertemperatur von 900 °C werden weniger gut vorhergesagt, da sich der Schädigungsmechanismus ändert. Eine Verifikation des Modells erfolgte mit Hilfe eines Bauteilversuchs an einem Abgassammler. Die überwiegende Anzahl der experimentell ermittelten Rissorte wurden von dem Modell vorhergesagt. Ein wesentliches Ziel des Vorhabens war, den Einfluss von HCF-Schwingungen auf die TMF-Lebensdauer vertieft experimentell zu untersuchen und das bereits bestehende Lebensdauermodell auf HCF-Überlagerung zu erweitern. Es wurde ein bruchmechanisch motivierter Ansatz entwickelt, in dem die Lebensdauerminderung durch die im TMF-Zyklus überlagerten HCF-Schwingungen abgebildet wird. Mit diesem Ansatz lassen sich die Lebensdauern sowohl für den Werkstoff SiMo 4.05 als auch für den Ni-Resist in guter Übereinstimmung mit dem Experiment Vorhersagen. Das Ziel des Forschungsvorhabens ist erreicht worden. PY - 2015 IS - 1082 SP - 1 EP - 168 CY - Frankfurt/Main AN - OPUS4-35112 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Schicker, Johannes A1 - Sievert, Rainer A1 - Fedelich, Bernard A1 - Noack, Hans-Dieter A1 - Kazak, Fedor A1 - Matzak, Kathrin A1 - Kühn, Hans-Joachim A1 - Klingelhöffer, Hellmuth A1 - Skrotzki, Birgit T1 - TMF Lebensdauerberechnung ATL-Heißteile - Entwicklung von Rechenmodellen zur Lebensdauervorhersage von Werkstoffen für Abgasturbolader-Heißteile unter thermomechanischer Ermüdungsbeanspruchung und Übertragung für Anwendung auf Bauteile PY - 2010 IS - 902 SP - 1 EP - 156 CY - Frankfurt am Main AN - OPUS4-20931 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jürgens, Maria A1 - Sonntag, Nadja A1 - Olbricht, Jürgen A1 - Fedelich, Bernard A1 - Skrotzki, Birgit T1 - The effect of dwell times on the thermomechanical fatigue life performance of grade P92 steel at intermediate and low strain amplitudes JF - Materials Science and Engineering: A N2 - Results of an extended TMF test program on grade P92 steel in the temperature range of 620 °C - 300 °C, comprising in-phase (IP) and out-of-phase (OP) tests, partly performed with symmetric dwells at Tmax/Tmin, are presented. In contrast to previous studies, the low-strain regime is also illuminated, which approaches flexible operation in a power plant with start/stop cycles. At all strain amplitudes, the material performance is characterized by continuous cyclic softening, which is retarded in tests at lower strains but reaches similar magnitudes in the course of testing. In the investigated temperature range, the phase angle does not affect fatigue life in continuous experiments, whereas the IP condition is more detrimental in tests with dwells. Fractographic analyses indicate creep-dominated and fatigue-dominated damage for IP and OP, respectively. Analyses of the (micro)hardness distribution in the tested specimens suggest an enhanced microstructural softening in tests with dwell times for the low- but not for the high-strain regime. To rationalize the obtained fatigue data, the fracture-mechanics-based D_TMF concept, which was developed for TMF life assessment of ductile alloys, was applied. It is found that the D_TMF parameter correlates well with the measured fatigue lives, suggesting that subcritical growth of cracks (with sizes from a few microns to a few millimeters) governs failure in the investigated range of strain amplitudes. KW - 9-12%Cr steel KW - Thermomechanical fatigue KW - Symmetric dwell periods KW - Low strain KW - Parametric modeling PY - 2021 DO - https://doi.org/10.1016/j.msea.2020.140593 VL - 805 SP - 140593 PB - Elsevier B.V. AN - OPUS4-52374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhadeliya, Ashok A1 - Rehmer, Birgit A1 - Fedelich, Bernard A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit A1 - Jokisch, T. ED - Zimmermann, M. T1 - Rissfortschrittsuntersuchungen an gefügten Nickelbasiswerkstoffen bei hoher Temperatur T2 - Werkstoffe und Bauteile auf dem Prüfstand N2 - In nickelbasierten Superlegierungen, die für Gasturbinenschaufeln verwendet werden, sind bei hohen Betriebstemperaturen und -belastungen Kriechschäden, Ermüdung, Korrosion und Oxi-dation zu beobachten. Die betroffenen Turbinenschaufeln müssen ersetzt oder repariert werden, um Effizienzverluste und ein eventuelles Bauteilversagen zu vermeiden. In letzter Zeit wurden additive Fertigungs- und Lötverfahren für die Reparatur und das Fügen von Nickelbasiswerk-stoffen entwickelt, um die Einschränkungen der traditionellen Reparaturverfahren zu überwinden. Für eine auslegungsrelevante Bewertung des Risswachstumsverhaltens in den Fügezonen, die durch diese neuen Technologien erzeugt werden, sind Rissfortschrittsuntersuchungen erfor-derlich. Entsprechende Untersuchungen an gefügten Proben werden in diesem Beitrag vorge-stellt. Die Rissfortschrittsversuche werden an gefügten SEN-Proben (Single Edge Notch) bei einem Spannungsverhältnis von 0,1 und einer Temperatur von 950 °C durchgeführt. Das Riss-wachstum wird mit der DCPD-Methode (Direct Current Potential Drop) überwacht, und die ge-messenen Potenzialsignale werden anhand der optisch vermessenen Risslänge und einer Finite-Elemente-Analyse kalibriert. Der Spannungsintensitätsfaktor (SIF) für die gefügte SEN-Geometrie wird mit Hilfe von Finite-Elemente-Analysen berechnet. Auf diese Weise können Rissfortschrittskurven aus den experimentellen Daten abgeleitet werden. T2 - Tagung „Werkstoffprüfung 2022“ CY - Dresden, Germany DA - 27.10.2022 KW - Lötverbindung KW - Rissfortschritt KW - SEN-Probe KW - Gefügte Nickelbasislegierungen PY - 2022 SN - 978-3-88355-430-3 VL - 2022 SP - 67 EP - 72 AN - OPUS4-57090 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Butz, Adam A1 - Fedelich, Bernard A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Schmitz, Sebastian ED - Moninger, G. T1 - Risserkennung an Bohrlochproben: Numerische Voruntersuchung für eine neuartige Methode zur Rissformerkennung T1 - Crack Detection on Borehole Specimens: Numerical pre-examination for a novel crack shape detection method T2 - Tagungsband zur Tagung Werkstoffprüfung 2018 - Werkstoffe und Bauteile auf dem Prüfstand N2 - Es konnte anhand einer numerischen Voruntersuchung gezeigt werden, dass anhand der kombinierten Auswertung der im Versuch verwendeten Sensorik eine Einteilung der unter Ermüdung in Bohrlochproben auftretenden Rissformen in verschiedene Hauptkategorien (Eckriss, Oberflächenriss, Durchgangsriss) möglich ist. N2 - When fatigued specimens with a hole are to be investigated regarding crack growth, it may be the case that the shape of the crack can’t be identified with sufficient certainty. If marking the fracture surface e.g. using beach marks is not possible, a method is required that nevertheless allows for the determination of the crack shape in order to calculate the corresponding fracture mechanics parameters. This paper describes a numerical pre-study for a method that allows for the classification of cracks in a sample featuring a drill hole into one of three crack shape classes based on the combined evaluation of various types of test data. T2 - Tagung Werkstoffprüfung 2018 CY - Bad Neuenahr, Germany DA - 06.12.2018 KW - Crack KW - LCF KW - Data Fusion KW - Risse KW - Rissform KW - Datenfusion PY - 2018 VL - 2018 SP - 249 EP - 254 AN - OPUS4-46976 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard A1 - Kühn, Hans-Joachim A1 - Rehmer, Birgit A1 - Skrotzki, Birgit ED - Iacoviello, Francesco T1 - Modeling the lifetime reduction due to the superposition of TMF and HCF loadings in cast iron alloys T2 - Procedia Structural Integrity N2 - The superposition of small amplitude, high frequency loading cycles (HCF) to slow, large amplitude loading cycles (TMF) can significantly reduce the fatigue life. In this work, the combined TMF+HCF loading has been experimentally investigated for a cast iron alloy. In particular, the influence of the HCF frequency of the HCF amplitude and of the location of the superposed HCF cycles has been assessed. It was observed that the HCF frequency has a limited impact on the TMF fatigue life. On the other side, the HCF-strain amplitude has a highly non-linear influence on the TMF fatigue life. A simple estimate for the fatigue life reduction due to the superposed HCF cycles has been derived from fracture mechanics considerations. It is assumed that the number of propagation cycles up to failure can be neglected after a threshold for the HCF loading has been reached. The model contains only two adjustable parameters and can be combined with any TMF life prediction model. The model predictions are compared with the test results for a large range of TMF+HCF loading conditions. T2 - 21st European Conference on Fracture, ECF21 CY - Catania, Italy DA - 20.06.2016 KW - Thermomechanical Fatigue (TMF); High Cycle Fatigue (HCF); Cast iron; Fatigue assessment PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-369550 DO - https://doi.org/doi:10.1016/j.prostr.2016.06.274 VL - 2 SP - 2190 EP - 2197 PB - Elsevier CY - Radarweg 29, 1043 NX Amsterdam, The Netherlands, AN - OPUS4-36955 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jürgens, Maria A1 - Olbricht, Jürgen A1 - Fedelich, Bernard A1 - Skrotzki, Birgit T1 - Low Cycle Fatigue and Relaxation Performance of Ferritic–Martensitic Grade P92 Steel JF - Metals N2 - Due to their excellent creep resistance and good oxidation resistance, 9–12% Cr ferritic–martensitic stainless steels are widely used as high temperature construction materials in power plants. However, the mutual combination of different loadings (e.g., creep and fatigue), due to a “flexible” operation of power plants, may seriously reduce the lifetimes of the respective components. In the present study, low cycle fatigue (LCF) and relaxation fatigue (RF) tests performed on grade P92 helped to understand the behavior of ferritic–martensitic steels under a combined loading. The softening and lifetime behavior strongly depend on the temperature and total strain range. Especially at small strain amplitudes, the lifetime is seriously reduced when adding a hold time which indicates the importance of considering technically relevant small strains. KW - Ferritic–martensitic steel KW - P92 KW - Low cycle fatigue KW - Relaxation fatigue KW - Cyclic softening PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-473905 DO - https://doi.org/10.3390/met9010099 VL - 9 IS - 1 SP - 99, 1 EP - 25 PB - MDPI AN - OPUS4-47390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard A1 - Epishin, A. A1 - Link, T. A1 - Klingelhöffer, Hellmuth A1 - Portella, Pedro Dolabella A1 - Skrotzki, Birgit ED - Maruyama, K. ED - Abe, F. ED - Igarashi, M. ED - Kishida, K. ED - Suzuki, M. ED - Yoshimi, K. T1 - Implementation of creep induced rafting into mechanical modelling of superalloys T2 - 12th International conference on creep and fracture of engineering materials and structures (Proceedings) T2 - 12th International conference on creep and fracture of engineering materials and structures CY - Kyoto, Japan DA - 2012-05-27 KW - Single-crystal nickel-base superalloys KW - Microstructural degradation KW - Creep KW - Modelling KW - Rafting PY - 2012 SP - 1 EP - 4(?) AN - OPUS4-27564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -