TY - JOUR A1 - Stratakis, E. A1 - Bonse, Jörn A1 - Heitz, J. A1 - Siegel, J. A1 - Tsibidis, G.D. A1 - Skoulas, E. A1 - Papadopoulos, A. A1 - Mimidis, A. A1 - Joel, A.-C. A1 - Comanns, P. A1 - Krüger, Jörg A1 - Florian, C. A1 - Fuentes-Edfuf, Y. A1 - Solis, J. A1 - Baumgartner, W. T1 - Laser engineering of biomimetic surfaces N2 - The exciting properties of micro- and nano-patterned surfaces found in natural species hide a virtually endless potential of technological ideas, opening new opportunities for innovation and exploitation in materials science and engineering. Due to the diversity of biomimetic surface functionalities, inspirations from natural surfaces are interesting for a broad range of applications in engineering, including phenomena of adhesion, friction, wear, lubrication, wetting phenomena, self-cleaning, antifouling, antibacterial phenomena, thermoregulation and optics. Lasers are increasingly proving to be promising tools for the precise and controlled structuring of materials at micro- and nano-scales. When ultrashort-pulsed lasers are used, the optimal interplay between laser and material parameters enables structuring down to the nanometer scale. Besides this, a unique aspect of laser processing technology is the possibility for material modifications at multiple (hierarchical) length scales, leading to the complex biomimetic micro- and nano-scale patterns, while adding a new dimension to structure optimization. This article reviews the current state of the art of laser processing methodologies, which are being used for the fabrication of bioinspired artificial surfaces to realize extraordinary wetting, optical, mechanical, and biological-active properties for numerous applications. The innovative aspect of laser functionalized biomimetic surfaces for a wide variety of current and future applications is particularly demonstrated and discussed. The article concludes with illustrating the wealth of arising possibilities and the number of new laser micro/nano fabrication approaches for obtaining complex high-resolution features, which prescribe a future where control of structures and subsequent functionalities are beyond our current imagination. KW - Biomimetic surfaces KW - Laser processing KW - Surface functionalization KW - Bioinspiration KW - Bionic materials PY - 2020 U6 - https://doi.org/10.1016/j.mser.2020.100562 SN - 0927-796X VL - 141 SP - 100562-1 EP - 100562-47 PB - Elsevier B.V. AN - OPUS4-50927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tsibidis, G. D. A1 - Mimidis, A. A1 - Skoulas, E. A1 - Kirner, Sabrina V. A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Stratakis, E. T1 - Modelling periodic structure formation on 100Cr6 steel after irradiation with femtosecond-pulsed laser beams N2 - We investigate the periodic structure formation upon intense femtosecond pulsed irradiation of chrome steel (100Cr6) for linearly polarised laser beams. The underlying physical mechanism of the laser-induced periodic structures is explored, their spatial frequency is calculated and theoretical results are compared with experimental observations. The proposed theoretical model comprises estimations of electron excitation, heat transfer, relaxation processes, and hydrodynamics-related mass transport. Simulations describe the sequential formation of sub-wavelength ripples and supra-wavelength grooves. In addition, the influence of the laser wavelength on the periodicity of the structures is discussed. The proposed theoretical investigation offers a systematic methodology towards laser processing of steel surfaces with important applications. KW - Laser-induced periodic surface structures KW - Femtosecond laser ablation KW - Steel PY - 2018 UR - https://link.springer.com/article/10.1007/s00339-017-1443-y U6 - https://doi.org/10.1007/s00339-017-1443-y SN - 0947-8396 SN - 1432-0630 VL - 124 IS - 1 SP - 27, 1 EP - 13 PB - Springer-Verlag AN - OPUS4-43626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hermens, U. A1 - Kirner, Sabrina A1 - Emonts, C. A1 - Comanns, P. A1 - Skoulas, E. A1 - Mimidis, A. A1 - Mescheder, H. A1 - Winands, K. A1 - Krüger, Jörg A1 - Stratakis, E. A1 - Bonse, Jörn T1 - Mimicking lizard-like surface structures upon ultrashort laser pulse irradiation of inorganic materials N2 - Inorganic materials, such as steel, were functionalized by ultrashort laser pulse irradiation (fs- to ps-range) to modify the surface’s wetting behavior. The laser processing was performed by scanning the laser beam across the surface of initially polished flat sample material. A systematic experimental study of the laser processing parameters (peak fluence, scan velocity, line overlap) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, grooves, spikes, etc.). Analyses of the surface using optical as well as scanning electron microscopy revealed morphologies providing the optimum similarity to the natural skin of lizards. For mimicking skin structures of moisture-harvesting lizards towards an optimization of the surface wetting behavior, additionally a two-step laser processing strategy was established for realizing hierarchical microstructures. In this approach, micrometer-scaled capillaries (step 1) were superimposed by a laser-generated regular array of small dimples (step 2). Optical focus variation imaging measurements finally disclosed the three dimensional topography of the laser processed surfaces derived from lizard skin structures. The functionality of these surfaces was analyzed in view of wetting properties. KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures KW - Lizard KW - Surface wetting KW - Fluid transport KW - Steel PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0169433216328306 U6 - https://doi.org/10.1016/j.apsusc.2016.12.112 SN - 0169-4332 SN - 1873-5584 VL - 418 IS - Part B SP - 499 EP - 507 PB - Elsevier, North-Holland CY - Amsterdam AN - OPUS4-40509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kirner, Sabrina V. A1 - Hermens, U. A1 - Mimidis, A. A1 - Skoulas, E. A1 - Florian, C. A1 - Hischen, F. A1 - Plamadeala, C. A1 - Baumgartner, W. A1 - Winands, K. A1 - Mescheder, H. A1 - Krüger, Jörg A1 - Solis, J. A1 - Siegel, J. A1 - Stratakis, E. A1 - Bonse, Jörn T1 - Mimicking bug-like surface structures and their fluid transport produced by ultrashort laser pulse irradiation of steel N2 - Ultrashort laser pulses with durations in the fs-to-ps range were used for large area surface processing of steel aimed at mimicking the morphology and extraordinary wetting behaviour of bark bugs (Aradidae) found in nature. The processing was performed by scanning the laser beam over the surface of polished flat sample surfaces. A systematic variation of the laser processing parameters (peak fluence and effective number of pulses per spot diameter) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, i.e., LIPSS, grooves, spikes, etc.). Moreover, different laser processing strategies, varying laser wavelength, pulse duration, angle of incidence, irradiation atmosphere, and repetition rates, allowed to achieve a range of morphologies that resemble specific structures found on bark bugs. For identifying the ideal combination of parameters for mimicking bug-like structures, the surfaces were inspected by scanning electron microscopy. In particular, tilted micrometre-sized spikes are the best match for the structure found on bark bugs. Complementary to the morphology study, the wetting behaviour of the surface structures for water and oil was examined in terms of philic/ phobic nature and fluid transport. These results point out a route towards reproducing complex surface structures inspired by nature and their functional response in technologically relevant materials. KW - Biomometics KW - Surface wetting KW - Steel KW - Bug KW - Laser-induced periodic surface structures KW - Fluid transport KW - Femtosecond laser ablation PY - 2017 U6 - https://doi.org/10.1007/s00339-017-1317-3 SN - 0947-8396 SN - 1432-0630 VL - 123 IS - 12 SP - 754, 1 EP - 13 AN - OPUS4-42817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -