TY - JOUR A1 - Silbernagl, Dorothee A1 - Cappella, Brunero T1 - Mechanical properties of thin polymer films on stiff substrates N2 - Force–displacement curves have been acquired with a commercial atomic force microscope on thin films of poly(n-butyl methacrylate) on glass substrates in order to examine the so-called 'mechanical double layer' topic, i.e. the influence of the substrate on the mechanical properties of the film in dependence of the film thickness. The hyperbolic fit, a novel semi-empirical equation introduced in previous articles, has been further corroborated. The interpretation of this equation has been deepened, yielding a quantitative and demonstrative characterization of the mechanical properties of double layers. Provided that the Young's moduli of bulk polymer and substrate are measured from the deformation curves, this mathematical model permits to fit the deformation–force curves on the double layers and to determine the thickness of the polymer films in wide range (0–200 nm). KW - Atomic force microscopy KW - Indentation KW - Rheology KW - Polymers KW - Thin films PY - 2010 DO - https://doi.org/10.1002/sca.20196 SN - 0161-0457 SN - 1932-8745 VL - 32 IS - 5 SP - 282 EP - 293 PB - Wiley CY - Hoboken, NJ AN - OPUS4-22681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silbernagl, Dorothee A1 - Cappella, Brunero T1 - Reconstruction of a hidden topography by single AFM force-distance curves N2 - Force–distance curves have been acquired with an Atomic Force Microscope on polymethyl methacrylate with embedded glass spheres. The glass spheres provide a stiff substrate with an irregular and complex topography hidden underneath a compliant and even polymer film. This situation is a special case of a mechanical double-layer, which we examined in detail in previous experiments. Up to now uniform and non-uniform polymer films on an even substrate were examined. The film thickness on each point of the sample surface was known and force–distance curves could be averaged in groups according to the film thickness. In this way we were able to develop a semi empirical approach which allows describing the shape of averaged force–distance curves depending on the Young’s moduli of the involved materials and on the film thickness. In this experiment we reconstruct a hidden topography, i.e., we determine the polymer thickness on each point of the sample by analyzing single force–distance curves with our semi empirical equation. The accuracy reached by this approach permits to obtain a reconstruction of the shape and position of the embedded particles limited by a maximum detection depth. Single curves are also analyzed qualitatively in order to locate areas where the adhesion at the polymer/glass interface is weak or the two phases are detached. KW - Atomic Force Microscopy KW - Force-distance curves KW - Composite materials KW - Mechanical properties KW - Interfaces PY - 2009 DO - https://doi.org/10.1016/j.susc.2009.04.029 SN - 0039-6028 VL - 603 IS - 16 SP - 2363 EP - 2369 PB - Elsevier CY - Amsterdam AN - OPUS4-22682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cappella, Brunero A1 - Silbernagl, Dorothee T1 - Nanomechanica lProperties of Mechanical Double-Layers: A Novel Semiempirical Analysis N2 - Force-displacement curves have been acquired with a commercial atomic force microscope on a thin film of poly(n-butyl methacrylate) on glass substrates. The film thickness is nonuniform, ranging in the measured area from 0 to 30 nm, and gives the possibility to survey the so-called "mechanical double-layer" topic, i.e., the influence of the substrate on the mechanical properties of the film in dependence of the film thickness. The stiffness and the deformation for each force-distance curve were determined and related to the film thickness. We were able to estimate the resolution of the film thickness that can be achieved by means of force-distance curves. By exploiting the data acquired in the present and in a previous experiment, a novel semiempirical approach to describe the mechanical properties of a mechanical double-layer is introduced. The mathematical model, with which deformation-force curves can be described, permits to calculate the Young's moduli of film and substrate in agreement with literature values and to determine the film thickness in agreement with the topography. PY - 2007 DO - https://doi.org/10.1021/la701234q SN - 0743-7463 SN - 1520-5827 VL - 23 IS - 21 SP - 10779 EP - 10787 PB - American Chemical Society CY - Washington, DC AN - OPUS4-17808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cappella, Brunero A1 - Silbernagl, Dorothee T1 - Nanomechanical properties of polymer thin films measured by force-distance curves N2 - Force–displacement curves have been acquired with a commercial atomic force microscope on thin films of poly(n-butyl methacrylate) on glass substrates. Different film thicknesses, from 10 up to 430 nm, were chosen to examine in detail the so called “mechanical double-layer” topic, i.e., the influence of the substrate on the determination of the mechanical properties of thin films. Taking advantage of the Hertz theory we calculated for all films the contact radius between tip and sample as a function of the applied load. Further Young's modulus of the samples was derived from the experimental data as a function of the applied load and, alternatively, of the deformation. The results of this analysis for 10 different film thicknesses were fitted with several half empirical equations proposed by several researchers. The focus of this work is to evaluate such existing half empirical theories for mechanical double-layers and to show the need for an alternative consistent approach. KW - Atomic force microscopy KW - Polymer thin films KW - Indentation KW - Young´s modulus PY - 2008 DO - https://doi.org/10.1016/j.tsf.2007.09.042 SN - 0040-6090 VL - 516 IS - 8 SP - 1952 EP - 1960 PB - Elsevier CY - Amsterdam AN - OPUS4-17809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stühler, Merlin R. A1 - Makki, Hesam A1 - Silbernagl, Dorothee A1 - Dimde, Mathias A1 - Ludwig, Kai A1 - Tegner, Bengt E. A1 - Greve, Christopher A1 - Rausch, Konstantin A1 - Herzig, Eva M. A1 - Köhler, Anna A1 - Plajer, Alex J. T1 - Flexibility and Dynamicity Enhances and Controls Supramolecular Self-Assembly of Zinc(II) Metallogels N2 - Supramolecular self-assembly of stacked architectures is typically achieved through hydrogen bonding or π–π interactions between monomers constructed from stable and inert bonds. In contrast, coordinative interactions of early metals promise distinct self-assembly behaviour due to more flexible bonding geometries and a wider range of stabilities and exchange kinetics. In this report we demonstrate that tailoring the flexible coordination sphere of Zinc(II) complexes via subtle ligand modification promotes not only one but also three-dimensional self-assembly both thermodynamically and kinetically into higher-order fibrous morphologies, the latter being elucidated by electron tomography. As a result, coordination chemistry can be translated into both nanoscopic (fibre stiffness) and macroscopic (thermal gel stability) material properties. Utilizing dynamicity enables gelation via subcomponent self-assembly, constructing the supramolecular polymer network simultaneously with the monomer. Furthermore, coordinative dis- and reassembly via metal-ligand exchange reactions involving the first and second coordination spheres allows for control over gelation and emission of the system. Our report links concepts in supramolecular self-assembly and coordination chemistry by leveraging the unique bonding interactions that cannot be achieved for traditional monomers, promising applications in stimuli-responsive optoelectronics. KW - Nanomaterial KW - AFM KW - Organometallic KW - Gel PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634221 DO - https://doi.org/10.1002/adfm.202507793 SN - 1616-301X SP - 1 EP - 10 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-63422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silbernagl, Dorothee A1 - Kömmling, Anja A1 - Zaghdoudi, Maha A1 - Ghasem Zadeh Khorasani, Media A1 - Jaunich, Matthias T1 - Data-driven nanomechanical study of filled fluoroelastomer aged in air and hydrogen atmosphere N2 - Fluoroelastomer (FKM) composites are typically used as sealing materials in challenging non-ambient environments. Depending on the environment, two main aging mechanisms, chemical aging, and physical aging, can be identified. Chemical aging, the degradation of the elastomer, is present for example in thermal-oxidative conditions and can be directly observed as it affects the bulk. Physical aging, relaxation and rearrangement of the elastomers segmental conformation is commonly observed at elevated temperatures and effects predominantly the elastomer interphase. As a highly localized nanoscopic effect it is usually observed indirectly by phenomological approaches and not systematically understood. In this study, as a typical example for chemical aging, filled FKM was aged in air (150°C, 100 days). Physical aging of FKM was realized by exposure to chemically inert H2 (150°C, 50 bar, 100 days), since temperature and gas-induced swelling is known to promote physical aging. The effects of both conditions are directly compared with the initial unaged material. We use atomic force microscopy (AFM) force spectroscopy as a method to resolve nanoscopic heterogeneous FKM. With this method the effect of aging on the spatially distinguishable material phases was directly observed. In thermal oxidative aged FKM the matrix shows a decrease in van der Waals interactions and stiffness, indicating dehydrofluorination and chain scission. In H2 aged FKM, the development of an immobilized amorphous interphase (IAP) was observed, indicating physical aging. By additionally evaluating a larger data set with supervised machine learning, these observations were validated for a larger, statistically representative sample area, allowing conclusions to be drawn about the macroscopic behaviour of the material. KW - Fluoroelastomer KW - Atomic force microscopy KW - Data-driven KW - Hydrogen KW - Ageing mechanism KW - Physical aging KW - Polymer interphase PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-648154 DO - https://doi.org/10.1016/j.polymdegradstab.2025.111715 SN - 0141-3910 VL - 242 SP - 1 EP - 10 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-64815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghasem Zadeh Khorasani, Media A1 - Elert, Anna Maria A1 - Hodoroaba, Vasile-Dan A1 - Agudo Jácome, Leonardo A1 - Altmann, Korinna A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Short- and long-range mechanical and chemical interphases caused by interaction of Boehmite (γ-AlOOH) with anhydride-cured epoxy resins N2 - Understanding the interaction between boehmite and epoxy and the formation of their interphases with different mechanical and chemical structures is crucial to predict and optimize the properties of epoxy-boehmite nanocomposites. Probing the interfacial properties with atomic force microscopy (AFM)-based methods, especially particle-matrix long-range interactions, is challenging. This is due to size limitations of various analytical methods in resolving nanoparticles and their interphases, the overlap of interphases, and the effect of buried particles that prevent the accurate interphase property measurement. Here, we develop a layered model system in which the epoxy is cured in contact with a thin layer of hydrothermally synthesized boehmite. Different microscopy methods are employed to evaluate the interfacial properties. With intermodulation atomic force microscopy (ImAFM) and amplitude dependence force spectroscopy (ADFS), which contain information about stiffness, electrostatic, and van der Waals forces, a soft interphase was detected between the epoxy and boehmite. Surface potential maps obtained by scanning Kelvin probe microscopy (SKPM) revealed another interphase about one order of magnitude larger than the mechanical interphase. The AFM-infrared spectroscopy (AFM-IR) technique reveals that the soft interphase consists of unreacted curing agent. The long-range electrical interphase is attributed to the chemical alteration of the bulk epoxy and the formation of new absorption bands. KW - Nanocomposites KW - Interphase KW - Intermodulation AFM KW - Electron microscopy KW - Infrared nano AFM PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483672 UR - https://www.mdpi.com/2079-4991/9/6/853/htm DO - https://doi.org/10.3390/nano9060853 SN - 2079-4991 VL - 9 IS - 6 SP - 853, 1 EP - 20 PB - MDPI AN - OPUS4-48367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Hodoroaba, Vasile-Dan A1 - Sturm, Heinz T1 - The effect of boehmite nanoparticles (gamma‐AlOOH) on nanomechanical and thermomechanical properties correlated to crosslinking density of epoxy N2 - We show that complex physical and chemical interactions between boehmite nanoparticles and epoxy drastically affect matrix properties, which in the future will provide tuning of material properties for further optimization in applications from automotive to aerospace. We utilize intermodulation atomic force microscopy (ImAFM) for probing local stiffness of both particles and polymer matrix. Stiff particles are expected to increase total stiffness of nanocomposites and the stiffness of polymer should remain unchanged. However, ImAFM revealed that stiffness of matrix in epoxy/boehmite nanocomposite is significantly higher than unfilled epoxy. The stiffening effect of the boehmite on epoxy also depends on the particle concentration. To understand the mechanism behind property alteration induced by boehmite nanoparticles, network architecture is investigated using dynamic mechanical thermal analysis (DMTA). It was revealed that although with 15 wt% boehmite nanoparticles the modulus at glassy state increases, crosslinking density of epoxy for this composition is drastically low. KW - Crosslinking density KW - Epoxy KW - Intermodulation KW - Atomic force microscopy KW - Nanomechanical properties KW - Boehmite nanoparticles PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-476050 DO - https://doi.org/10.1016/j.polymer.2018.12.054 SN - 0032-3861 SN - 1873-2291 VL - 164 SP - 174 EP - 182 PB - Elsevier AN - OPUS4-47605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Silbernagl, Dorothee A1 - Rautenberg, Max A1 - Schmid, Thomas A1 - Feiler, Torvid A1 - Reimann, K. A1 - Ghalgaoui, A. A1 - Sturm, Heinz A1 - Paulus, B. A1 - Emmerling, Franziska T1 - A Mechanistic Perspective on Plastically Flexible Coordination Polymers N2 - Mechanical flexibility in single crystals of covalently bound materials is a fascinating and poorly understood phenomenon. We present here the first example of a plastically flexible one-dimensional (1D) coordination polymer. The compound [Zn(m-Cl)2(3,5-dichloropyridine)2]n is flexible over two crystallographic faces. Remarkably, the single crystal remains intact when bent to 1808. A combination of microscopy, diffraction, and spectroscopic studies have been used to probe the structural response of the crystal lattice to mechanical bending. Deformation of the covalent polymer chains does not appear to be responsible for the observed macroscopic bending. Instead, our results suggest that mechanical bending occurs by displacement of the coordination polymer chains. Based on experimental and theoretical evidence, we propose a new model for mechanical flexibility in 1D coordination polymers. Moreover, our calculations propose a cause of the different mechanical properties of this compound and a structurally similar elastic material KW - Coordination polymer KW - Flexible crystals KW - Mechanical properties KW - Plastic deformation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504755 DO - https://doi.org/10.1002/anie.201914798 VL - 59 IS - 14 SP - 5557 EP - 5561 PB - Wiley-VCH AN - OPUS4-50475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fornacon-Wood, Christoph A1 - Stühler, Merlin R. A1 - Millanvois, Alexandre A1 - Steiner, Luca A1 - Weimann, Christiane A1 - Silbernagl, Dorothee A1 - Sturm, Heinz A1 - Paulus, Beate A1 - Plajer, Alex J. T1 - Fluoride recovery in degradable fluorinated polyesters N2 - We report a new class of degradable fluorinated polymers through the copolymerization of tetrafluorophthalic anhydride and propylene oxide or trifluoropropylene oxide which show up to 20 times quicker degradation than the non-fluorinated equivalents and allow for fluoride recovery. KW - Fluoropolymers KW - Recycling KW - PFAS KW - AFM force distance curves KW - AFM plastic deformation KW - AFM friction analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-606768 DO - https://doi.org/10.1039/d4cc02513j VL - 60 SP - 7479 EP - 7482 PB - Royal Society of Chemistry AN - OPUS4-60676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -