TY - JOUR A1 - Sprengel, Maximilian A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Evans, Alexander A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Pirling, T. A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Triaxial Residual Stress in Laser Powder Bed Fused 316L: Effects of Interlayer Time and Scanning Velocity JF - Advanced Engineering Materials N2 - The triaxial distribution of the residual stress in laser powder bed fused austenitic steel 316L was determined by X-ray and neutron diffraction. The residual stress analysis results were linked to the thermal history of the specimens, which were manufactured with varying inter-layer-times and scanning velocities. A clear link between the in-process temperature of the specimens and the residual stress was found, based on in-situ monitoring data. KW - Stainless Steel KW - AGIL KW - Residual Stress KW - X-ray and Neutron Diffraction KW - Additive Manufacturing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542620 DO - https://doi.org/10.1002/adem.202101330 SP - 1 EP - 13 PB - Wiley-VCH GmbH AN - OPUS4-54262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Synchrotron X-ray refraction detects microstructure and porosity evolution during in-situ heat treatments JF - Materials science and engineering A N2 - For the first time, synchrotron X-ray refraction radiography (SXRR) has been paired with in-situ heat treatment to monitor microstructure and porosity evolution as a function of temperature. The investigated material was a laser powder bed fusion (LPBF) manufactured AlSi10Mg, where the initial eutectic Si network is known to disintegrate and spherodize into larger particles with increasing temperature. Such alloy is also prone to thermally induced porosity (TIP). We show that SXRR allows detecting the changes in the Si-phase morphology upon heating, while this is currently possible only using scanning electron microscopy. SXRR also allows observing the growth of pores, usually studied via X-ray computed tomography, but on much smaller fields-of-view. Our results show the great potential of in-situ SXRR as a tool to gain in-depth knowledge of the susceptibility of any material to thermally induced damage and/or microstructure evolution over statistically relevant volumes. KW - Synchrotron X-ray refraction radiography KW - Si network disintegration KW - Thermally induced porosity (TIP) KW - Laser powder bed fusion (LPBF) KW - Statistically relevant volumes KW - AlSi10Mg alloy PY - 2022 DO - https://doi.org/10.1016/j.msea.2022.142732 SN - 0921-5093 VL - 838 SP - 1 EP - 11 PB - Elsevier CY - Amsterdam AN - OPUS4-54297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Magnier, V. A1 - Brunel, F. A1 - Dufrenoy, P. T1 - Influence of the Composition on the Compressive Behaviour of a Semi-Metallic Brake-Pad Material JF - Materials N2 - The contact interface between the rotation and static part of a friction brake is central to the optimal functioning of the brake system due to the occurrence of heat dissipation, mechanical interaction and thermal exchanges. Generally, braking performances are evaluated by the energetic efficiency and wear rates of the contact surface. However, the compressive behaviour of the contact materials has also a significant contribution to the overall performances. In this work, the meso- and microscopic compressive behaviour of a sintered semi-metallic brake-pad material is investigated mainly via compression testing coupled with Digital Image Correlation (DIC) technique, as well as optical and scanning electron microscopy (SEM) analysis. The composition of a reference material (RM) is simplified to a selection of nine components, as opposed to up to thirty components typically used in commercial brake-pad materials. The retained components are considered as the most crucial for safe-operating performances. At the studied stress levels, the RM material is flexible (E = 5330 MPa), deformable (Ezz−plastic = −0.21%), and exhibits hysteresis loops. Subsequently, the contribution to the mechanical response of each individual component is investigated by producing the so-called dissociated materials, where the number of components is, at a time, further reduced. It is observed that the macroscopic behaviour is mainly controlled by the content (i.e., size distribution, shape and nature) of graphite particles, and that the hysteresis is only related to one of the two types of graphite used (G2 particles). Moreover, RM containing 13 wt% of G2 particles embedded in a relatively soft matrix (10.86 GPa) is able to increase the hysteresis (by 35%) when compared to the dissociated material containing 20 wt% of G2 particles which is embedded in a stiffer matrix (E = 106 GPa). KW - Semi-metallic brake-pad material KW - Powder metallurgy KW - Components influence KW - Graphite induced hysteresis KW - Digital image correlation (DIC) KW - Compression testing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562003 DO - https://doi.org/10.3390/ma15227911 VL - 15 IS - 22 SP - 7911 PB - MDPI AN - OPUS4-56200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Fernández, R. A1 - Saliwan Neumann, Romeo A1 - González-Doncel, G. A1 - Bruno, Giovanni T1 - Dislocation substructures in pure aluminium after creep deformation as studied by electron backscatter diffraction JF - Journal of applied crystallography N2 - In the present work, electron backscatter diffraction was used to determine the microscopic dislocation structures generated during creep (with tests interrupted at the steady state) in pure 99.8% aluminium. This material was investigated at two different stress levels, corresponding to the power-law and power-law breakdown regimes. The results show that the formation of subgrain cellular structures occurs independently of the crystallographic orientation. However, the density of these cellular structures strongly depends on the grain crystallographic orientation with respect to the tensile axis direction, with <111> grains exhibiting the highest densities at both stress levels. It is proposed that this behaviour is due to the influence of intergranular stresses, which is different in <111> and <001> grains. KW - Creep KW - Pure aluminium KW - Electron backscatter diffraction KW - Cellular structures KW - Power law and power-law breakdown PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552003 DO - https://doi.org/10.1107/S1600576722005209 SN - 0021-8898 SN - 1600-5767 VL - 55 SP - 860 EP - 869 PB - Wiley-Blackwell CY - Copenhagen AN - OPUS4-55200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Synchrotron x ray refraction detects microstructure and porosity evolution during in situ heat treatments in an LPBF ALSI10MG alloy N2 - The complexity of any microstructural characterization significantly increases when there is a need to evaluate the icrostructural evolution as a function of temperature. To date, this characterization is primarily performed by undertaking elaborative ex-situ experiments where the material’s heating procedure is interrupted at different temperatures or times. Moreover, these studies are often limited to a region smaller than the representative elementary volume, which can lead to partial or even biased interpretations of the collected data. This limitation can be greatly overcome by using in-situ synchrotron X-ray refraction (SXRR). T2 - ICTMS 2022 CY - Grenoble, France DA - 27.06.2022 KW - Synchrotron refraction KW - In situ heating KW - AlSi10Mg alloy KW - Additive manufacturing KW - Microstructural evolution PY - 2022 AN - OPUS4-55199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Synchrotron X-Ray Refraction detects microstructure and porosity evolution during in-situ heat treatments N2 - The complexity of any microstructural characterization significantly increases when there is a need to evaluate the microstructural evolution as a function of temperature. To date, this characterization is primarily performed by undertaking elaborative ex-situ experiments where the material’s heating procedure is interrupted at different temperatures or times. Moreover, these studies are often limited to a region smaller than the representative elementary volume, which can lead to partial or even biased interpretations of the collected data. This limitation can be greatly overcome by using in-situ synchrotron X-ray refraction (SXRR). In this study, SXRR has been combined with in-situ heat treatment to monitor the porosity evolution as a function of temperature. It is shown that SXRR is a robust and straightforward method for time-resolved (3-5 min required per scan) evaluation of thermally induced microstructural changes over macroscopically relevant volumes. T2 - SNI2022, German conference for research with synchrotron radiation, neutrons and ion beams at large facilities CY - Berlin, Germany DA - 05.09.2022 KW - Synchrotron X-Ray Refraction KW - In situ heating KW - AlSi10Mg KW - Laser powder bed fusion KW - Thermally induced porosity PY - 2022 AN - OPUS4-55778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Synchrotron X-Ray Refraction detects microstructure and porosity evolution during in-situ heat treatments N2 - The complexity of any microstructural characterization significantly increases when there is a need to evaluate the microstructural evolution as a function of temperature. To date, this characterization is primarily performed by undertaking elaborative ex-situ experiments where the material’s heating procedure is interrupted at different temperatures or times. Moreover, these studies are often limited to a region smaller than the representative elementary volume, which can lead to partial or even biased interpretations of the collected data. This limitation can be greatly overcome by using in-situ synchrotron X-ray refraction (SXRR). In this study, SXRR has been combined with in-situ heat treatment to monitor the porosity evolution as a function of temperature. This technique is a robust and straightforward method for time-resolved (3-5 min required per scan) evaluation of thermally induced microstructural changes over macroscopically relevant volumes. T2 - AAM2022, Alloys for Additive Manufacturing Symposium CY - Munich, Germany DA - 12.09.2022 KW - Synchrotron X-Ray Refraction KW - In situ heating KW - AlSi10Mg KW - Laser powder bed fusion KW - Thermally induced porosity PY - 2022 AN - OPUS4-55779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Polatidis, E. A1 - Čapek, J. A1 - Mohr, Gunther A1 - Serrano Munoz, Itziar A1 - Bruno, Giovanni T1 - Understanding the impact of texture on the micromechanical anisotropy of laser powder bed fused Inconel 718 JF - Journal of materials science N2 - The manufacturability of metallic alloys using laser-based additive manufacturing methods such as laser powder bed fusion has substantially improved within the last decade. However, local melting and solidification cause hierarchically structured and crystallographically textured microstructures possessing large residual stress. Such microstructures are not only the origin of mechanical anisotropy but also pose metrological challenges for the diffraction-based residual stress determination. Here we demonstrate the influence of the build orientation and the texture on the microstructure and consequently the mechanical anisotropy of as-built Inconel 718. For this purpose, we manufactured specimens with [001]/[011]-, [001]- and [011]/[111]-type textures along their loading direction. In addition to changes in the Young’s moduli, the differences in the crystallographic textures result in variations of the yield and ultimate tensile strengths. With this in mind, we studied the anisotropy on the micromechanical scale by subjecting the specimens to tensile loads along the different texture directions during in situ neutron diffraction experiments. In this context, the response of multiple lattice planes up to a tensile strain of 10% displayed differences in the load partitioning and the residual strain accumulation for the specimen with [011]/[111]-type texture. However, the relative behavior of the specimens possessing an [001]/[011]- and [001]-type texture remained qualitatively similar. The consequences on the metrology of residual stress determination methods are discussed. KW - Laser powder bed fusion KW - Additive manufacturing KW - Electron backscatter diffraction KW - Tensile testing KW - Diffraction PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555840 DO - https://doi.org/10.1007/s10853-022-07499-9 SN - 1573-4803 VL - 2022 IS - 57 SP - 15036 EP - 15058 PB - Springer Science + Business Media B.V. CY - Dordrecht AN - OPUS4-55584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Mishurova, Tatiana A1 - Madia, Mauro A1 - Pirling, T. A1 - Evans, Alexander A1 - Klaus, M. A1 - Haubrich, J. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Influence of a 265 °C heat treatment on the residual stress state of a PBF-LB/M AlSi10Mg alloy JF - Journal of materials science N2 - Laser Powder Bed Fusion (PBF-LB/M) additive manufacturing (AM) induces high magnitude residual stress (RS) in structures due to the extremely heterogeneous cooling and heating rates. As the RS can be deleterious to the fatigue resistance of engineering components, great efforts are focused on understanding their generation and evolution after post-process heat treatments. In this study, one of the few of its kind, the RS relaxation induced in an as-built PBF-LB/M AlSi10Mg material by a low-temperature heat treatment (265 °C for 1 h) is studied by means of X-ray and neutron diffraction. Since the specimens are manufactured using a baseplate heated up to 200 °C, low RS are found in the as-built condition. After heat treatment a redistribution of the RS is observed, while their magnitude remains constant. It is proposed that the redistribution is induced by a repartition of stresses between the a-aluminium matrix and the silicon phase, as the morphology of the silicon phase is affected by the heat treatment. A considerable scatter is observed in the neutron diffraction RS profiles, which is principally correlated to the presence (or absence) of pockets of porosity developed at the borders of the chessboard pattern. KW - Neutron diffraction KW - Additive manufacturing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565115 DO - https://doi.org/10.1007/s10853-022-07997-w SN - 1573-4803 VL - 57 SP - 22082 EP - 22098 PB - Springer Science + Business Media CY - Dordrecht AN - OPUS4-56511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Madia, Mauro T1 - Investigation of residual stresses and microstructure effects on the fatigue behaviour of a L-PBF AlSi10Mg alloy JF - Procedia Structural Integrity N2 - Al-Si alloys produced by Laser Powder Bed Fusion (L-PBF) techniques allow the fabrication of lightweight free-shape components that find space in aerospace, automotive, biomedical and military applications. Due to the high cooling rates occurring during the building process, L-PBF AlSi10Mg alloys exhibit an ultra-fine microstructure that leads to superior mechanical properties in the as-built condition compared to conventional cast Al-Si materials. Nevertheless, L-PBF processing induces high thermal gradients, leading to deleterious residual stress levels that must be considered to avoid part distortion and unpredicted failures. In order to relax detrimental residual stress and to increase the ductility, post-processing stress relief treatments are generally performed. In as-built condition the hypoeutectic AlSi10Mg microstructure consist of fine α-Al cells containing uniformly dispersed silicon nanoparticles, which are, in addition, surrounded by a eutectic Si network. Above 260°C the silicon interconnectivity starts to breakdown into spheroidized particles and to coarsen. At the same time, the heating residual stresses are relieved. The objective of the contribution is to investigate, under different heat treatment conditions, the evolution of microstructure and residual stresses in view of optimizing the fatigue performance of the alloy. To this purpose various heat treatments in a range of temperatures between 265°C and 300°C for a duration between 15 minutes and 2 hours are performed. The microstructure modifications are analysed using a scanning electron microscope and the residual stress state is measured by laboratory X-ray diffraction. T2 - FATIGUE DESIGN 2021 CY - Online meeting DA - 17.11.2021 KW - AlSi10Mg alloy KW - Additive manufacturing KW - L-PBF KW - Residual stress KW - Heat treatment PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544942 DO - https://doi.org/10.1016/j.prostr.2022.03.057 SN - 2452-3216 VL - 38 SP - 564 EP - 571 PB - Elsevier B.V. AN - OPUS4-54494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -