TY - CONF A1 - Bruno, Giovanni A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Ulbricht, Alexander A1 - Fritsch, Tobias A1 - Sprengel, Maximilian A1 - Evans, Alexander A1 - Kromm, Arne A1 - Madia, Mauro ED - Bruno, Giovanni T1 - A Critical Discussion on the Diffraction-Based Experimental Determination of Residual Stress in AM Parts T2 - Structural integrityofadditive manufactured materials and parts N2 - As opposed to reviewing results on experimental determination of residual stress by diffraction, this paper discusses the open issues when dealing with residual stress determination in additive manufactured parts, in particular those manufactured with laser powder bed fusion techniques. Three points are addressed in detail: (a) the proper determination of the strain-free reference d0, (b) the problem of the determination of the principal axes, and (c) the use of the correct diffraction elastic constants. It is shown that all methods to determine the strain-free reference d0 suffer from caveats, and care must be taken in evaluating the most suitable for the problem being tackled. In addition, it is shown that, in some systems, the principal axes do correspond to the geometrical axes of the specimen, but this needs to be systematically checked, especially in the case of uni- or bidirectional hatching strategies. Finally, the need to experimentally determine the proper diffraction elastic constants is underlined, especially in the case of strongly textured specimens, which again depends on the deposition strategy. T2 - ASTM ICAM 2020 – ASTM International Conference on Additive Manufacturing CY - Online meeting DA - 16.11.2020 KW - Additive Manufacturing KW - Diffraction KW - Residual Stress PY - 2020 DO - https://doi.org/10.1520/STP163120190148 VL - STP1631 SP - 122 EP - 138 PB - ASTM International CY - USA AN - OPUS4-51347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Serrano Munoz, Itziar A1 - Kupsch, Andreas A1 - Müller, Bernd R. T1 - X-Ray-Refraction-Imaging-Techniques high-resolution microstructural characterization N2 - X-ray refraction is analogous to visible light deflection by matter; it occurs at boundaries between different media. The main difference between visible light and X-rays is that in the latter case deflection angles are very small, from a few seconds to a few minutes of arc (i.e., the refraction index n is near to 1). Trivially but importantly, deflection of X-rays is also sensitive to the orientation of the object boundaries. These features make X-ray refraction techniques extremely suitable to a) detect defects such as pores and microcracks and quantify their densities in bulk (not too heavy) materials, and b) evaluate porosity and particle properties such as orientation, size, and spatial distribution (by mapping). While X-ray refraction techniques cannot in general image single defects, their detectability is simply limited by the wavelength of the radiation. We thereby show the application of X-ray refraction 2D mapping (topography) and tomography to different sorts of problems in materials science and technology: 1) Sintering of SiC green bodies; 2) Porosity analysis in additively manufactured alloys; 3) Fiber de-bonding in metal and polymer matrix composites. Such techniques, especially at the Synchrotron BESSY II, Berlin, Germany, can be used in-situ, i.e. when the specimen is subjected to temperatures or external loads. Applications of in-situ X-ray refraction radiography on aluminum alloys and composites are also shown. The use of X-ray refraction analysis yields quantitative information, which can be directly input in kinetics, mechanical and damage models. T2 - ICT 2023 CY - Fürth, Germany DA - 27.02.2023 KW - X-ray refraction KW - Composites KW - In-situ KW - Additive Manufacturing KW - Sintering KW - Ceramics PY - 2023 AN - OPUS4-57200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fernández, R. A1 - Bokuchava, G. A1 - Bruno, Giovanni A1 - Serrano Munoz, Itziar A1 - González Doncel, G. T1 - On the dependence of creep-induced dislocation configurations on crystallographic orientation in pure Al and Al-Mg JF - Journal of Applied Crystallography N2 - The peak broadening in neutron diffraction experiments on tensile specimens of pure Al (99.8%) and an Al-Mg alloy pre-deformed at different creep strains is analysed. These results are combined with the kernel angular misorientation of electron backscatter diffraction data from the creep-deformed microstructures. It is found that differently oriented grains possess different microstrains. These microstrains vary with creep strain in pure Al, but not in the Al-Mg alloy. It is proposed that this behaviour can explain the power-law breakdown in pure Al and the large creep strain observed in Al-Mg. The present findings further corroborate a description of the creep-induced dislocation structure as a fractal, predicated on previous work. KW - Creep KW - Aluminium alloys KW - Dislocations KW - Fractals KW - Diffraction peak width PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575527 DO - https://doi.org/10.1107/S1600576723003771 SN - 0021-8898 VL - 56 IS - Pt 3 SP - 764 EP - 775 AN - OPUS4-57552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritsch, Tobias A1 - Farahbod-Sternahl, L. A1 - Serrano Munoz, Itziar A1 - Léonard, F. A1 - Haberland, C. A1 - Bruno, Giovanni T1 - 3D Computed Tomography Quantifies the Dependence of Bulk Porosity, Surface Roughness, and Re-Entrant Features on Build Angle in Additively Manufactured IN625 Lattice Struts JF - Advanced Engineering Materials N2 - Layer-by-layer additive manufacturing (AM) by means of laser-powder bed Fusion (L-PBF) offers many prospects regarding the design of lattice structures used, for example, in gas turbines. However, defects such as bulk porosity, Surface roughness, and re-entrant features are exacerbated in nonvertical structures, such as tilted struts. The characterization and quantification of these kinds of defects are essential for the correct estimation of fracture and fatigue properties. Herein, cylindrical struts fabricated by L-PBF are investigated by means of X-ray computed tomography (XCT), with the aim of casting light on the dependence of the three kinds of defects (bulk porosity, surface roughness, and re-entrant features) on the build angle. Innovative analysis methods are proposed to correlate shape and position of pores, to determine the angular-resolved Surface roughness, and to quantify the amount of re-entrant surface features, q. A meshing of the XCT surface enables the correlation of q with the classical Surface roughness Pa. This analysis leads to the conclusion that there is a linear correlation between q and Pa. However, it is conjectured that there must be a threshold of surface roughness, below which no re-entrant features can be build. KW - Additive manufacturing KW - Laser powder bed fusion KW - Computed tomography KW - Surface roughness analysis KW - Re-entrant surface feature PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534728 DO - https://doi.org/10.1002/adem.202100689 IS - 2100689 SP - 1 EP - 8 PB - Wiley-VCH Verlag AN - OPUS4-53472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mege-Revil, Alexandre A1 - Rapontchombo-Omanda, Jessie A1 - Serrano Munoz, Itziar A1 - Cristol, Anne-Lise A1 - Magnier, Vincent A1 - Dufrenoy, Philippe T1 - Sintered Brake Pads Failure in High-Energy Dissipation Braking Tests: A Post-Mortem Mechanical and Microstructural Analysis JF - Materials N2 - The industrial sintering process used to produce metallic matrix pads has been altered to diminish the amount of copper used. Unfortunately, replacing a large part of the copper with iron seems to have reached a limit. In the high-energy, emergency-type rail braking used in this study, the materials are put to the very limit of their usage capacity, allowing us to observe the evolution of the microstructure and mechanical properties of sintered, metallic matrix pads. After the braking test, their compressive behaviour was assessed using digital image correlation (DIC), and their microstructure with scanning electron microscopy (SEM). The worn material has three flat layers with different microstructures and compressive behaviours. The bo􀁇om layer seems unmodified. Macroscopic and microscopic cracks run through the intermediate layer (2–15 mm depth). The top layer has stiffened thanks to resolidification of copper. The temperature reaches 1000 °C during the braking test, which also explains the carbon diffusion into iron that result in the weakening of iron–graphite interfaces in the pad. Finally, submicronic particles are detected at many open interfaces of the worn and compressed pad. Associated with the predominant role of graphite particles, this explains the weak compressive behaviour of the pads. KW - Friction braking KW - Sintering KW - Metallic matrix pad KW - Microstructure KW - Scanning electron microscopy (SEM) KW - Compressive test KW - Cracks KW - Digital image correlation (DIC) KW - Diffusion PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587318 DO - https://doi.org/10.3390/ma16217006 SN - 1996-1944 VL - 16 IS - 21 SP - 1 EP - 18 PB - MDPI AN - OPUS4-58731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Haubrich, J. A1 - Evsevleev, Sergei A1 - Evans, Alexander A1 - Meixner, M. A1 - Serrano Munoz, Itziar A1 - Sevostianov, I. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Connecting Diffraction-Based Strain with Macroscopic Stresses in Laser Powder Bed Fused Ti-6Al-4V JF - Metallurgical and Materials Transactions A N2 - The laser powder bed fusion (LPBF) production process often results in large residual stress (RS) in the parts. Nondestructive techniques to determine RS are badly needed. However, a reliable quantification of macro-RS (i.e., stress at the component level) by means of diffraction-based techniques is still a great challenge, because the link between diffraction-based strain and macro-RS is not trivial. In this study, we experimentally determine (by means of in-situ synchrotron radiation diffraction) this link for LPBF Ti-6Al-4V. We compare our results with commonly used models to determine the so-called diffraction elastic constants (DECs). We show that LPBF materials possess different DECs than wrought alloys, simply because their microstructural and mechanical properties are different. We also show that the existing models can be used to calculate DECs only if high accuracy of the RS values is not required. If the peculiarities of the microstructure have to be taken into account (as is the case of additively manufactured materials), a radically new approach is desirable. KW - Tiatanium KW - Synchrotron X-ray diffraction KW - Macroscopic stress KW - Laser powder bed fusion KW - Texture KW - Diffraction elastic constants PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506483 DO - https://doi.org/10.1007/s11661-020-05711-6 VL - 51 IS - 6 SP - 3194 EP - 3204 PB - Springer AN - OPUS4-50648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Rehmer, Birgit A1 - Haubrich, J. A1 - Avila, Luis A1 - Schoenstein, F. A1 - Serrano Munoz, Itziar A1 - Requena, G. A1 - Bruno, Giovanni T1 - Separation of the impact of residual stress and microstructure on the fatigue performance of LPBF Ti-6Al-4V at elevated temperature JF - International Journal of Fatigue N2 - Manufacturing defects, high residual stress (RS), and microstructures affect the structural integrity of laser powder bed fusion (LPBF) Ti-6Al-4V. In this study, the individual effect of these factors on fatigue performance at elevated temperature (300 °C) was evaluated. Material in as-built condition and subjected to post-processing, including two heat treatments and hot isostatic pressing, was investigated. It was found that in the absence of tensile RS, the fatigue life at elevated temperature is primary controlled by the defects; and densification has a much stronger effect than the considered heat treatments on the improvement of the mechanical performance. KW - Additive manufacturing KW - Ti-6Al-4V KW - Residual stress KW - Fatigue performance KW - Computed tomography PY - 2021 DO - https://doi.org/10.1016/j.ijfatigue.2021.106239 SN - 0142-1123 VL - 148 SP - 106239 PB - Elsevier Ltd. AN - OPUS4-52369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar T1 - Multiscale residual stress analysis and synchrotron X-ray refraction of additively manufactured parts N2 - The overview of the activity of group 8.5 Micro-NDT (BAM, Belin, Germany) in the field of additively manufacturing material characterization will be presented. The challenges in the residual stress analysis of AM components are discussed on the basis on the show studies performed in BAM. Also, the synchrotron X-ray refraction technique, available in BAM, is presented, showing example of in-situ heating test of Al10SiMg AM material. T2 - Seminar at Grenoble INP, Science et Ingénierie des Matériaux et Procédés (SIMaP) CY - Grenoble, France DA - 01.07.2022 KW - Additive manufacturing KW - Residual stress KW - X-ray refraction KW - Computed tomography PY - 2022 AN - OPUS4-55232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mouiya, M. A1 - Martynyuk, M. A1 - Kupsch, Andreas A1 - Laquai, R. A1 - Müller, Bernd R. A1 - Doyen, N.T. A1 - Tamraoui, Y. A1 - Serrano Munoz, Itziar A1 - Huger, M. A1 - Kachanov, M. A1 - Bruno, Giovanni T1 - The stress–strain behavior of refractory microcracked aluminum titanate: The effect of zigzag microcracks and its modeling JF - Journal of the American Ceramic Society N2 - The stress–strain behavior of ceramics, such as aluminum titanate, has certain features that are unusual for brittle materials—in particular, a substantial nonlinearity under uniaxial tension, and load–unload hysteresis caused by the sharp increase of the incremental stiffness at the beginning of unloading. These features are observed experimentally and are attributed to microcracking. Here we compare different degrees of stress–strain nonlinearity of aluminum titanate materials and quantitatively model them. We use advanced mechanical testing to observe the mechanical response at room and high temperature; electron microscopy, and X-ray refraction radiography to observe the microstructural changes. Experiments show that two types of microcracks can be distinguished: (i) microcracks induced by cooling from the sintering temperature (due to heterogeneity and anisotropy of thermal expansion), with typical sizes of the order of grain size, and (ii) much larger microcracks generated by the mechanical loading. The two microcrack types produce different effects on the stress–strain curves. Such microcracks and the features of the stress–strain behavior depend on the density of the cooling-induced microcracks and on the distribution of grain sizes. They are modeled analytically and numerically. KW - Hystersis KW - Nonlinear stress-strain curve KW - Refractory KW - Stiffness KW - X-ray refraction PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580517 DO - https://doi.org/10.1111/jace.19325 SN - 1551-2916 VL - 106 SP - 6995 EP - 7008 PB - Wiley-Blackwell CY - Oxford [u.a.] AN - OPUS4-58051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Serrano Munoz, Itziar A1 - Laquai, René A1 - Bruno, Giovanni T1 - Anwendungen der Röntgenrefraktionstechnik zur zerstörungsfreien Charakterisierung von Keramiken und Verbundwerkstoffen T2 - DGZfP-Berichtsband BB 180 N2 - Die Brechung von Röntgenstrahlen (Röntgenrefraktion) an Grenzflächen zwischen Materialien unterschiedlicher Dichte ist analog zur Ablenk-ung von sichtbarem Licht an z.B. Glasoberflächen. Es gibt jedoch zwei wesentliche Unterschiede: a) konvexe Grenzflächen verursachen Divergenz (d.h. der Brechungsindex n ist kleiner als 1), und b) die Ablenkungswinkel sind sehr klein, und reichen von einigen Bogensekunden bis zu einigen Bogenminuten (d.h. n ist nahe bei 1); Wie auch bei sichtbarem Licht ist die Ablenkungsrichtung der Röntgenstrahlen abhängig von der Orientierung der durchstrahlten Grenzfläche. Aufgrund dieser Eigenschaften eignen sich Röntgenrefraktionsmethoden hervorragend für: a) die Erkennung und Quantifizierung von Defekten wie Poren und Mikrorissen und b) die Bewertung von Porosität und Partikeleigenschaften wie Orientierung, Größe und räumliche Verteilung. Wir zeigen die Anwendung der Röntgenrefraktionsradiographie (2,5D Technik) und der -tomographie (3D Technik) für die Untersuchung verschiedener Probleme in der Werkstoffwissenschaft und -technologie: a) Sintern von SiC-Grünkörpern b) Porositätsanalyse in Dieselpartikelfiltersilikaten c) Faser-Matrix-Haftung in Metall- und Polymermatrixverbundwerkstoffen d) Mikrorissbildung in Glaskeramik. Wir zeigen, dass der Einsatz von Röntgenrefraktionsmethoden quantitative Ergebnisse liefert, die direkt als Parameter in Werkstoffmodellen verwendet werden können. T2 - DACH-Jahrestagung 2023 CY - Friedrichshafen, Germany DA - 15.05.2023 KW - Röntgen-Refraktion KW - Verbundwerkstoffe KW - Keramik PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576171 UR - https://jahrestagung.dgzfp.de/Portals/jt2023/BB180/Inhalt/p9.pdf UR - https://jahrestagung.dgzfp.de/Portals/jt2023/BB180/Inhalt/default.htm SN - 978-3-947971-29-9 SP - 1 EP - 16 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-57617 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -