TY - JOUR A1 - Barthel, Mathias A1 - Pedan, Vasilisa A1 - Hahn, Oliver A1 - Rothhardt, Monika A1 - Bresch, Harald A1 - Jann, Oliver A1 - Seeger, Stefan T1 - XRF-Analysis of fine and ultrafine particles emitted from laser printing devices N2 - In this work, the elemental composition of fine and ultrafine particles emitted by ten different laser printing devices (LPD) is examined. The particle number concentration time series was measured as well as the particle size distributions. In parallel, emitted particles were size-selectively sampled with a cascade impactor and subsequently analyzed by the means of XRF. In order to identify potential sources for the aerosol's elemental composition, materials involved in the printing process such as toner, paper, and structural components of the printer were also analyzed. While the majority of particle emissions from laser printers are known to consist of recondensated semi volatile organic compounds, elemental analysis identifies Si, S, Cl, Ca, Ti, Cr, and Fe as well as traces of Ni and Zn in different size fractions of the aerosols. These elements can mainly be assigned to contributions from toner and paper. The detection of elements that are likely to be present in inorganic compounds is in good agreement with the measurement of nonvolatile particles. Quantitative measurements of solid particles at 400 °C resulted in residues of 1.6 × 109 and 1.5 × 1010 particles per print job, representing fractions of 0.2% and 1.9% of the total number of emitted particles at room temperature. In combination with the XRF results it is concluded that solid inorganic particles contribute to LPD emissions in measurable quantities. Furthermore, for the first time Br was detected in significant concentrations in the aerosol emitted from two LPD. The analysis of several possible sources identified the plastic housings of the fuser units as main sources due to substantial Br concentrations related to brominated flame retardants. KW - Particulate emissions KW - UFP KW - FP KW - Laser printers KW - XRF PY - 2011 DO - https://doi.org/10.1021/es201590q SN - 0013-936X SN - 1520-5851 VL - 45 IS - 18 SP - 7819 EP - 7825 PB - ACS Publ. CY - Washington, DC AN - OPUS4-24393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seeger, Stefan A1 - Brödner, Doris A1 - Jacobi, T. A1 - Rasch, Fabian A1 - Rothhardt, Monika A1 - Wilke, Olaf T1 - Emissions of fine and ultrafine particles and volatile organic compounds from different filament materials operated on a low-cost 3D printer T1 - Emissionen feiner und ultrafeiner Partikel sowie flüchtiger organischer Verbindungen beim Einsatz verschiedener Filamentmaterialien in einem „low-cost“-3D-Drucker N2 - 3D-printing or additive manufacturing has many promising and unique advantages. Especially low cost molten polymer Deposition Printers are increasingly populär in the private and educational sector. Their environmental friendliness can be questioned due to recently reported ultrafine particle and suspected VOC emissions, To further investigate 3D-printing as a potential indoor air pollution source we characterized fine and ultrafine particle emissions from a molten polymer deposition printer producing a 3D object with ten marketable polymer filament materials under controlled conditions in a test chamber. VOC emissions from the filaments have also been compared. Using a straightforward emission model time dependent and averaged particle emission rates were determined. The results indicate that under comparable conditions some filament materials produce mainly ultrafine particles up to an average rate of 1013 per minute. This value is in the upper ränge of typical indoor ultrafine particle sources (e.g. Smoking, frying, candle light, laser printer). The observed material-specific rates differ by five Orders of magnitude. Filament-specific gaseous emissions of organic compounds such as bisphenol A, styrene and others were also detected. Our results suggest a detailed evaluation of related risks and considering protective measures such as housing and filtering. N2 - 3D-Druck oder additive Herstellungsverfahren haben eine Menge vielversprechender und einzigartiger Vorteile. Insbesondere günstige 3D-Drucker für Polymere werden im privaten und ausbildenden Bereich zunehmend beliebter. Ihre Umweltfreundlichkeit kann aufgrund jüngst berichteter Emissionen ultrafeiner Partikel und vermuteter VOC-Emissionen infrage gestellt werden. Um 3D-Drucker für Polymere als mögliche Quelle von Innenraumluftverunreinigungen weiter zu untersuchen, charakterisierten wir die Emissionen feiner und ultrafeiner Partikel bei der Herstellung eines 3D-Objekts unter Verwendung zehn marktgängiger Polymerfilamente unter kontrollierten Bedingungen in einer Emissionsprüfkammer. Die VOC-Emissionen der verschiedenen Filamente wurden ebenfalls verglichen. Die zeitabhängigen und gemittelten Partikelemissionsraten wurden durch Anwendung eines einfachen Emissionsmodells bestimmt. Die Ergebnisse zeigen, dass unter vergleichbaren Bedingungen einige Filamente mit einer mittleren Rate von 10 KW - Emission KW - Ultrafine particles KW - VOC KW - 3D printer PY - 2018 SN - 0949-8036 SN - 0039-0771 VL - 78 IS - 3 SP - 79 EP - 87 PB - Springer-VDI-Verl. CY - Düsseldorf AN - OPUS4-44954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -